Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/22281
Başlık: | Hybrid neural network and genetic algorithm based machining feature recognition |
Yazarlar: | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. Öztürk, Nursel Öztürk, Ferruh AAG-9336-2021 AAG-9923-2021 7005688805 56271685800 |
Anahtar kelimeler: | Computer science Engineering Feature recognition Neural networks Genetic input selection Manufacturing features Design Classification System Search Model Backpropagation Computational complexity Computer aided manufacturing Feature extraction Genetic algorithms Image processing Machining Mathematical models Parameter estimation Problem solving Computer aided production systems Feature recognition Genetic input selection Network model Neural networks |
Yayın Tarihi: | Haz-2004 |
Yayıncı: | Springer |
Atıf: | Öztürk, N. ve Öztürk, F. (2004). “Hybrid neural network and genetic algorithm based machining feature recognition”. Journal of Intelligent Manufacturing, 15(3), 287-298. |
Özet: | In this research, neural networks (NNs) and genetic algorithms (GAs) are used together in a hybrid approach to reduce the computational complexity of feature recognition problem. The proposed approach combines the characteristics of evolutionary technique and NN to overcome the shortcomings of feature recognition problem. Consideration is given to reduce the computational complexity of network with specific interest to design the optimum network architecture using GA input selection approach. In order to evaluate the performance of the proposed system, experimental results are compared with previous NN based feature recognition research. |
URI: | https://doi.org/10.1023/B:JIMS.0000026567.63397.d5 https://link.springer.com/article/10.1023/B:JIMS.0000026567.63397.d5 http://hdl.handle.net/11452/22281 |
ISSN: | 0956-5515 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.