Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/22281
Başlık: Hybrid neural network and genetic algorithm based machining feature recognition
Yazarlar: Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.
Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
Öztürk, Nursel
Öztürk, Ferruh
AAG-9336-2021
AAG-9923-2021
7005688805
56271685800
Anahtar kelimeler: Computer science
Engineering
Feature recognition
Neural networks
Genetic input selection
Manufacturing features
Design
Classification
System
Search
Model
Backpropagation
Computational complexity
Computer aided manufacturing
Feature extraction
Genetic algorithms
Image processing
Machining
Mathematical models
Parameter estimation
Problem solving
Computer aided production systems
Feature recognition
Genetic input selection
Network model
Neural networks
Yayın Tarihi: Haz-2004
Yayıncı: Springer
Atıf: Öztürk, N. ve Öztürk, F. (2004). “Hybrid neural network and genetic algorithm based machining feature recognition”. Journal of Intelligent Manufacturing, 15(3), 287-298.
Özet: In this research, neural networks (NNs) and genetic algorithms (GAs) are used together in a hybrid approach to reduce the computational complexity of feature recognition problem. The proposed approach combines the characteristics of evolutionary technique and NN to overcome the shortcomings of feature recognition problem. Consideration is given to reduce the computational complexity of network with specific interest to design the optimum network architecture using GA input selection approach. In order to evaluate the performance of the proposed system, experimental results are compared with previous NN based feature recognition research.
URI: https://doi.org/10.1023/B:JIMS.0000026567.63397.d5
https://link.springer.com/article/10.1023/B:JIMS.0000026567.63397.d5
http://hdl.handle.net/11452/22281
ISSN: 0956-5515
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.