Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22486
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshyralyev, Allaberen-
dc.date.accessioned2021-10-26T21:22:31Z-
dc.date.available2021-10-26T21:22:31Z-
dc.date.issued2010-02-
dc.identifier.citationAshyralyev, A. ve Yıldırım, Ö. (2010). "On multipoint nonlocal boundary value problems for hyperbolic differential and difference equations". Taiwanese Journal of Mathematics, 14(1), 165-194.en_US
dc.identifier.issn1027-5487-
dc.identifier.issn2224-6851-
dc.identifier.urihttps://doi.org/10.11650/twjm/1500405734-
dc.identifier.urihttps://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-14/issue-1/ON-MULTIPOINT-NONLOCAL-BOUNDARY-VALUE-PROBLEMS-FOR-HYPERBOLIC-DIFFERENTIAL-AND/10.11650/twjm/1500405734.full-
dc.identifier.urihttp://hdl.handle.net/11452/22486-
dc.description.abstractThe nonlocal boundary value problem for differential equation in a Hilbert space H with the self-adjoint positive definite operator A is considered. The stability estimates for the solution of the problem under the assumption Sigma(n)(k=1) vertical bar alpha(k) + beta(k)vertical bar + Sigma(n)(k=1) vertical bar alpha(k)vertical bar Sigma(n)(m=1m not equal k) vertical bar beta(m)vertical bar < vertical bar 1 + Sigma(n)(k=1) alpha(k)beta(k)vertical bar are established. The first order of accuracy difference schemes for the approximate solutions of the problem are presented. The stability estimates for the solution of these difference schemes under the assumption Sigma(n)(k=1) vertical bar alpha(k)vertical bar + Sigma(n)(k=1) vertical bar beta(k)vertical bar + Sigma(n)(k=1) vertical bar alpha(k)vertical bar Sigma(n)(k=1) vertical bar beta(k)vertical bar < 1 are established. In practice, the nonlocal boundary value problems for one dimensional hyperbolic equation with nonlocal boundary conditions in space variable and multidimensional hyperbolic equation with Dirichlet condition in space variables are considered. The stability estimates for the solutions of difference schemes for the nonlocal boundary value hyperbolic problems are obtained.en_US
dc.language.isoenen_US
dc.publisherMathematical Society of Republic of Chinaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHyperbolic equationen_US
dc.subjectNonlocal boundary value problemsen_US
dc.subjectDifference schemesen_US
dc.subjectStabilityen_US
dc.subjectParabolic equationsen_US
dc.subjectBochner spacesen_US
dc.subjectWell-posednessen_US
dc.subjectStabilityen_US
dc.subjectSchemesen_US
dc.subjectMathematicsen_US
dc.titleOn multipoint nonlocal boundary value problems for hyperbolic differential and difference equationsen_US
dc.typeArticleen_US
dc.identifier.wos000274217800011tr_TR
dc.identifier.scopus2-s2.0-77950344939tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0003-1375-2503tr_TR
dc.identifier.startpage165tr_TR
dc.identifier.endpage194tr_TR
dc.identifier.volume14tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalTaiwanese Journal of Mathematicsen_US
dc.contributor.buuauthorYıldırım, Özgür-
dc.contributor.researcheridK-3041-2013tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid35775025200tr_TR
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Third Order Differential Equationen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Ashyralye_ve_Yıldırım_2010.pdf204.76 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons