Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/22664
Başlık: Mixed-model assembly line balancing using a multi-objective ant colony optimization approach
Yazarlar: Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.
0000-0003-1744-3062
Yağmahan, Betül
B-5557-2017
23487445600
Anahtar kelimeler: Computer science
Engineering
Operations research & management science
Assembly line balancing
Mixed-model
Ant colony optimization
Multi-objective
Formulation
Algorithm
System
Algorithms
Assembly machines
Efficiency
Multiobjective optimization
Problem solving
Ant-colony optimization
Assembly line balancing
Capacity utilization
Cycle time
Effective algorithms
Line efficiency
Mixed-model
Mixed-model assembly lines
Multi objective
Operation time
Optimal productivity
Production system
Test problem
Assembly
Yayın Tarihi: 15-Eyl-2011
Yayıncı: Pergamon-Elsevier Science
Atıf: Yağmahan, B. (2011). “Mixed-model assembly line balancing using a multi-objective ant colony optimization approach”. Expert Systems With Applications, 38(10), 12453-12461.
Özet: Mixed-model assembly lines are production systems at which two or more models are assembled sequentially at the same line. For optimal productivity and efficiency, during the design of these lines, the work to be done at stations must be well balanced satisfying the constraints such as time, space and location. This paper deals with the mixed-model assembly line balancing problem (MALBP). The most common objective for this problem is to minimize the number of stations for a given cycle time. However, the problem of capacity utilization and the discrepancies among station times due to operation time variations are of design concerns together with the number of stations, the line efficiency and the smooth production. A multi-objective ant colony optimization (MOACO) algorithm is proposed here to solve this problem. To prove the efficiency of the proposed algorithm, a number of test problems are solved. The results show that the MOACO algorithm is an efficient and effective algorithm which gives better results than other methods compared.
URI: https://doi.org/10.1016/j.eswa.2011.04.026
https://www.sciencedirect.com/science/article/pii/S0957417411005422
http://hdl.handle.net/11452/22664
ISSN: 0957-4174
1873-6793
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.