Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/22938
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2021-12-02T05:51:19Z | - |
dc.date.available | 2021-12-02T05:51:19Z | - |
dc.date.issued | 2012-04 | - |
dc.identifier.citation | Eskidere, Ö. vd. (2012). "A comparison of regression methods for remote tracking of Parkinson's disease progression". Expert Systems with Applications, 39(5), 5523-5528. | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2011.11.067 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417411016137 | - |
dc.identifier.uri | http://hdl.handle.net/11452/22938 | - |
dc.description.abstract | Remote patient tracking has recently gained increased attention, due to its lower cost and non-invasive nature. In this paper, the performance of Support Vector Machines (SVM), Least Square Support Vector Machines (LS-SVM), Multilayer Perceptron Neural Network (MLPNN), and General Regression Neural Network (GRNN) regression methods is studied in application to remote tracking of Parkinson's disease progression. Results indicate that the LS-SVM provides the best performance among the other three, and its performance is superior to that of the latest proposed regression method published in the literature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Parkinson's disease | en_US |
dc.subject | Unified parkinson's disease rating scale | en_US |
dc.subject | Least square support vector machine regression | en_US |
dc.subject | Neural-networks | en_US |
dc.subject | Ratings | en_US |
dc.subject | Voice | en_US |
dc.subject | Least squares approximations | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Neurodegenerative diseases | en_US |
dc.subject | Regression analysis | en_US |
dc.subject | General regression neural network | en_US |
dc.subject | Least square support vector machines | en_US |
dc.subject | Lower cost | en_US |
dc.subject | Multilayer perceptron neural networks | en_US |
dc.subject | Non-invasive | en_US |
dc.subject | Patient tracking | en_US |
dc.subject | Regression | en_US |
dc.subject | Regression method | en_US |
dc.subject | Remote tracking | en_US |
dc.subject | Support vector machines | en_US |
dc.title | A comparison of regression methods for remote tracking of Parkinson's disease progression | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000301155300089 | tr_TR |
dc.identifier.scopus | 2-s2.0-84855886060 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Teknik Bilimler Meslek Yüksekokulu. | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektronik Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 5523 | tr_TR |
dc.identifier.endpage | 5528 | tr_TR |
dc.identifier.volume | 39 | tr_TR |
dc.identifier.issue | 5 | tr_TR |
dc.relation.journal | Expert Systems with Applications | en_US |
dc.contributor.buuauthor | Eskidere, Ömer | - |
dc.contributor.buuauthor | Ertaş, Figen | - |
dc.contributor.buuauthor | Hanilci, Cemal | - |
dc.contributor.researcherid | AAH-4188-2021 | tr_TR |
dc.contributor.researcherid | S-4967-2016 | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 (Computer science, artificial intelligence) | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 24723995200 | tr_TR |
dc.contributor.scopusid | 24724154500 | tr_TR |
dc.contributor.scopusid | 35781455400 | tr_TR |
dc.subject.scopus | Parkinson's Disease; Voice Disorders; Speech Signal | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.