Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/22938
Başlık: | A comparison of regression methods for remote tracking of Parkinson's disease progression |
Yazarlar: | Uludağ Üniversitesi/Teknik Bilimler Meslek Yüksekokulu. Uludağ Üniversitesi/Mühendislik Fakültesi/Elektronik Mühendisliği Bölümü. Eskidere, Ömer Ertaş, Figen Hanilci, Cemal AAH-4188-2021 S-4967-2016 24723995200 24724154500 35781455400 |
Anahtar kelimeler: | Computer science Engineering Operations research & management science Parkinson's disease Unified parkinson's disease rating scale Least square support vector machine regression Neural-networks Ratings Voice Least squares approximations Neural networks Neurodegenerative diseases Regression analysis General regression neural network Least square support vector machines Lower cost Multilayer perceptron neural networks Non-invasive Patient tracking Regression Regression method Remote tracking Support vector machines |
Yayın Tarihi: | Nis-2012 |
Yayıncı: | Pergamon-Elsevier Science |
Atıf: | Eskidere, Ö. vd. (2012). "A comparison of regression methods for remote tracking of Parkinson's disease progression". Expert Systems with Applications, 39(5), 5523-5528. |
Özet: | Remote patient tracking has recently gained increased attention, due to its lower cost and non-invasive nature. In this paper, the performance of Support Vector Machines (SVM), Least Square Support Vector Machines (LS-SVM), Multilayer Perceptron Neural Network (MLPNN), and General Regression Neural Network (GRNN) regression methods is studied in application to remote tracking of Parkinson's disease progression. Results indicate that the LS-SVM provides the best performance among the other three, and its performance is superior to that of the latest proposed regression method published in the literature. |
URI: | https://doi.org/10.1016/j.eswa.2011.11.067 https://www.sciencedirect.com/science/article/pii/S0957417411016137 http://hdl.handle.net/11452/22938 |
ISSN: | 0957-4174 1873-6793 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.