Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23238
Title: Increased tumor uptake of chemotherapeutics and improved chemoresponse by novel non-anticoagulant low molecular weight heparin
Authors: Phillips, Patricia G.
Cui, Huadong
Abdel, Hani Nabi
Sajjad, Munawwar
Bernacki, Ralph
Veith, Jean
Mousa, Shaker A.
Uludağ Üniversitesi/Veterinerlik Fakültesi/Fizyoloji Anabilim Dalı.
0000-0002-5600-8162
Yalçın, Murat
AAG-6956-2021
57192959734
Keywords: Oncology
Non-anticoagulant heparins
Chemotherapy
Heparins
Tissue factor
Cancer
Survival
Inhibition
Therapy
Angiogenesis
Metastasis
Tinzaparin
Mechanisms
Resistance
Issue Date: Feb-2011
Publisher: Int Inst Anticancer Research
Citation: Phillips, P. G. vd. (2011). "Increased tumor uptake of chemotherapeutics and improved chemoresponse by novel non-anticoagulant low molecular weight heparin". Anticancer Research, 31(2), 411-419.
Abstract: Background: Recent prospective clinical trials of low molecular weight heparins (LMWHs) have demonstrated that these agents may provide significant advantages in terms of progression-free and overall survival in certain subgroups of cancer patients. The mechanisms of improved survival associated with LMWHs are not known, and may involve direct and/or indirect effects on tumor growth. The purpose of this study was to investigate the effects of LMWH and a sulfated non-anticoagulant LMWH (S-NACH) on tumor chemotherapeutic uptake and chemoresponse. Materials and Methods: LMWH and S-NACH were tested for their ability to reduce tumor growth and tumor-associated angiogenesis using three different in vivo models. Biodistribution studies were undertaken to determine the effect of these agents on uptake of paclitaxel (PACL) and doxorubicin (Dox) by breast cancer tumor xenografts. Results: LMWH and S-NACH (10 mg/kg s.c. daily) effectively limited tumor growth of human A549 lung adenocarcinoma xenografts in the nude mouse. In an MDA453/LCC6 breast tumor xenograft model, PACL plus S-NACH showed significant (p<0.01) tumor growth suppression and improved survival when compared to PACL alone. LMWH increased [I124-]-PACL uptake into MDA453/LCC6 tumors, with tumor:muscle ratios several fold greater than that of [I124-]-PACL alone 24 h post-injection. Similarly, LMWH and S-NACH significantly (p<0.01) increased the uptake of Dox by 1.5-2 fold in MCF7 Dox-resistant tumor xenografts. Conclusion: Protocols utilizing adjuvant or neoadjuvant therapy with LMWH or S-NACH could lead to increased tumor chemo responsiveness, potentially overcoming tumor chemoresistance.
URI: http://hdl.handle.net/11452/23238
ISSN: 0250-7005
1791-7530
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.