Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23261
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzer, Teoman-
dc.date.accessioned2021-12-14T10:55:21Z-
dc.date.available2021-12-14T10:55:21Z-
dc.date.issued2010-04-
dc.identifier.citationYaşar, E. ve Özer, T. (2010). "Conservation laws for one-layer shallow water wave systems". Nonlinear Analysis-Real World Applications, 11(2), 838-848.en_US
dc.identifier.issn1468-1218-
dc.identifier.urihttps://doi.org/10.1016/j.nonrwa.2009.01.028-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1468121809000303-
dc.identifier.urihttp://hdl.handle.net/11452/23261-
dc.description.abstractThe problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. lbragimov, A new conservation theorem, journal of Mathematical Analysis and Applications, 333(1) (2007) 311-328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler-Lagrange equations for some variational functional. After studying Lie point and Lie-Backlund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConservation lawsen_US
dc.subjectSymmetry groupsen_US
dc.subjectShallow water wave systemsen_US
dc.subjectPartial-differential equationsen_US
dc.subjectInvariant solutionsen_US
dc.subjectSymmetriesen_US
dc.subjectMathematicsen_US
dc.subjectBariumen_US
dc.subjectDifferential equationsen_US
dc.subjectEuler equationsen_US
dc.subjectFluorine containing polymersen_US
dc.subjectHydrodynamicstr_TR
dc.subjectLagrange multipliersen_US
dc.subjectQuantum theoryen_US
dc.subjectVariational techniquesen_US
dc.subjectWater analysisen_US
dc.subjectWater wavesen_US
dc.subjectWavesen_US
dc.subjectAdjoint equationsen_US
dc.subjectAdjoint variablesen_US
dc.subjectAxisymmetric flowen_US
dc.subjectConservation lawen_US
dc.subjectConservation theoremen_US
dc.subjectDispersive wavesen_US
dc.subjectEuler-lagrange equationsen_US
dc.subjectLagrangian systemen_US
dc.subjectLocal conservationen_US
dc.subjectMathematical analysisen_US
dc.subjectNonlocalen_US
dc.subjectNonlocal variablesen_US
dc.subjectPlane flowen_US
dc.subjectPotential symmetryen_US
dc.subjectShallow water wavesen_US
dc.subjectSymmetry groupsen_US
dc.subjectVariational functionalen_US
dc.subjectVariational principlesen_US
dc.subjectWave equationsen_US
dc.titleConservation laws for one-layer shallow water wave systemsen_US
dc.typeArticleen_US
dc.identifier.wos000273101100023tr_TR
dc.identifier.scopus2-s2.0-70449630122tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0003-4732-5753tr_TR
dc.identifier.startpage838tr_TR
dc.identifier.endpage848tr_TR
dc.identifier.volume11tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalNonlinear Analysis-Real World Applicationsen_US
dc.contributor.buuauthorYaşar, Emrullah-
dc.contributor.researcheridAAG-9947-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid23471031300tr_TR
dc.subject.scopusConservation Laws; Lie Point Symmetries; Self-Adjointnessen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.