Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/23261
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Özer, Teoman | - |
dc.date.accessioned | 2021-12-14T10:55:21Z | - |
dc.date.available | 2021-12-14T10:55:21Z | - |
dc.date.issued | 2010-04 | - |
dc.identifier.citation | Yaşar, E. ve Özer, T. (2010). "Conservation laws for one-layer shallow water wave systems". Nonlinear Analysis-Real World Applications, 11(2), 838-848. | en_US |
dc.identifier.issn | 1468-1218 | - |
dc.identifier.uri | https://doi.org/10.1016/j.nonrwa.2009.01.028 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S1468121809000303 | - |
dc.identifier.uri | http://hdl.handle.net/11452/23261 | - |
dc.description.abstract | The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. lbragimov, A new conservation theorem, journal of Mathematical Analysis and Applications, 333(1) (2007) 311-328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler-Lagrange equations for some variational functional. After studying Lie point and Lie-Backlund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Conservation laws | en_US |
dc.subject | Symmetry groups | en_US |
dc.subject | Shallow water wave systems | en_US |
dc.subject | Partial-differential equations | en_US |
dc.subject | Invariant solutions | en_US |
dc.subject | Symmetries | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Barium | en_US |
dc.subject | Differential equations | en_US |
dc.subject | Euler equations | en_US |
dc.subject | Fluorine containing polymers | en_US |
dc.subject | Hydrodynamics | tr_TR |
dc.subject | Lagrange multipliers | en_US |
dc.subject | Quantum theory | en_US |
dc.subject | Variational techniques | en_US |
dc.subject | Water analysis | en_US |
dc.subject | Water waves | en_US |
dc.subject | Waves | en_US |
dc.subject | Adjoint equations | en_US |
dc.subject | Adjoint variables | en_US |
dc.subject | Axisymmetric flow | en_US |
dc.subject | Conservation law | en_US |
dc.subject | Conservation theorem | en_US |
dc.subject | Dispersive waves | en_US |
dc.subject | Euler-lagrange equations | en_US |
dc.subject | Lagrangian system | en_US |
dc.subject | Local conservation | en_US |
dc.subject | Mathematical analysis | en_US |
dc.subject | Nonlocal | en_US |
dc.subject | Nonlocal variables | en_US |
dc.subject | Plane flow | en_US |
dc.subject | Potential symmetry | en_US |
dc.subject | Shallow water waves | en_US |
dc.subject | Symmetry groups | en_US |
dc.subject | Variational functional | en_US |
dc.subject | Variational principles | en_US |
dc.subject | Wave equations | en_US |
dc.title | Conservation laws for one-layer shallow water wave systems | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000273101100023 | tr_TR |
dc.identifier.scopus | 2-s2.0-70449630122 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-4732-5753 | tr_TR |
dc.identifier.startpage | 838 | tr_TR |
dc.identifier.endpage | 848 | tr_TR |
dc.identifier.volume | 11 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Nonlinear Analysis-Real World Applications | en_US |
dc.contributor.buuauthor | Yaşar, Emrullah | - |
dc.contributor.researcherid | AAG-9947-2021 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 23471031300 | tr_TR |
dc.subject.scopus | Conservation Laws; Lie Point Symmetries; Self-Adjointness | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.