Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/23261
Başlık: Conservation laws for one-layer shallow water wave systems
Yazarlar: Özer, Teoman
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0003-4732-5753
Yaşar, Emrullah
AAG-9947-2021
23471031300
Anahtar kelimeler: Conservation laws
Symmetry groups
Shallow water wave systems
Partial-differential equations
Invariant solutions
Symmetries
Mathematics
Barium
Differential equations
Euler equations
Fluorine containing polymers
Hydrodynamics
Lagrange multipliers
Quantum theory
Variational techniques
Water analysis
Water waves
Waves
Adjoint equations
Adjoint variables
Axisymmetric flow
Conservation law
Conservation theorem
Dispersive waves
Euler-lagrange equations
Lagrangian system
Local conservation
Mathematical analysis
Nonlocal
Nonlocal variables
Plane flow
Potential symmetry
Shallow water waves
Symmetry groups
Variational functional
Variational principles
Wave equations
Yayın Tarihi: Nis-2010
Yayıncı: Pergamon-Elsevier Science
Atıf: Yaşar, E. ve Özer, T. (2010). "Conservation laws for one-layer shallow water wave systems". Nonlinear Analysis-Real World Applications, 11(2), 838-848.
Özet: The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. lbragimov, A new conservation theorem, journal of Mathematical Analysis and Applications, 333(1) (2007) 311-328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler-Lagrange equations for some variational functional. After studying Lie point and Lie-Backlund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.
URI: https://doi.org/10.1016/j.nonrwa.2009.01.028
https://www.sciencedirect.com/science/article/pii/S1468121809000303
http://hdl.handle.net/11452/23261
ISSN: 1468-1218
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.