Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/23635
Başlık: | Sensitivity analysis for estimation of power losses in magnetic cores using neural network |
Yazarlar: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. 0000-0003-2546-0022 Küçük, İlker Derebaşı, Naim AAI-2254-2021 6602910810 11540936300 |
Anahtar kelimeler: | Chemistry Physics Magnetic materials Magnetic properties Sensitivity analysis Neural networks Magnetic properties Magnetic materials Magnetic flux Energy dissipation Density (specific gravity) Data processing Toroidal cores Preisach model Power losses Electrical steel Magnetic cores Tool Performance |
Yayın Tarihi: | Ara-2006 |
Yayıncı: | Pergamon-Elsevier |
Atıf: | Küçük, İ. ve Derebaşı, N. (2006). ''Sensitivity analysis for estimation of power losses in magnetic cores using neural network''. Journal of Physics and Chemistry of Solids, 67(12), 2473-2477. |
Özet: | Experimental data from a sample of 42 cores made from grain oriented 0.27 mm thick 3 % SiFe electrical steel with dimensions ranging from 35 to 160 mm outer diameter. 25-100 mm inner diameter and 10-70 mm strip width and a flux density range 0.2-1.7T have been obtained at 500 Hz and used as training data to a feed forward neural network. An analytical equation for prediction of power loss as depends on input parameters from the results of sensitivity analysis has been obtained. The calculated power losses with the analytical expression have also been compared with power loss obtained from the Preisach model after it has been applied to toroidal cores. The results show the proposed model can be used for estimation of power losses in the toroidal cores. |
URI: | https://doi.org/10.1016/j.jpcs.2006.07.001 https://www.sciencedirect.com/science/article/pii/S0022369706003623 http://hdl.handle.net/11452/23635 |
ISSN: | 0022-3697 1879-2553 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.