Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24059
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshyralyev, Allaberen-
dc.contributor.authorSimos, ‪Theodore E.-
dc.date.accessioned2022-01-13T06:54:07Z-
dc.date.available2022-01-13T06:54:07Z-
dc.date.issued2011-
dc.identifier.citationAshyralyev, A. vd. (2011). "Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator". ed. T. E. Simos. Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedings, 1389, 597-600.en_US
dc.identifier.isbn978-0-7354-0956-9-
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.3636801-
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.3636801-
dc.identifier.urihttp://hdl.handle.net/11452/24059-
dc.descriptionBu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractIn the present paper, two new second order of accuracy absolutely stable difference schemes are presented for the nonlocal boundary value problem { d(2)u(t)/dt(2) + Au(t) = f(t) (0 <= t <= 1), u(0) = Sigma(n)(j=1) alpha(j)u(lambda(j)) + phi, u(t)(0) = Sigma(n)(j=1) beta(j)u(t)(lambda(j)) + psi, 0 < lambda(1) < lambda(2) < ... < lambda(n) <= 1 for differential equations in a Hilbert space H with the self-adjoint positive definite operator A. The stability estimates for the solutions of these difference schemes are established. In practice, one-dimensional hyperbolic equation with nonlocal boundary conditions and multidimensional hyperbolic equation with Dirichlet conditions are considered. The stability estimates for the solutions of difference schemes for the nonlocal boundary value hyperbolic problems are obtained and the numerical results are presented to support our theoretical statements.en_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci & Engn (ESCMSE)en_US
dc.description.sponsorshipR M Santilli Fdnen_US
dc.description.sponsorshipACC I Sen_US
dc.language.isoenen_US
dc.publisherAmer Inst Pyhsicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectHyperbolic equationen_US
dc.subjectNonlocal boundary value problemsen_US
dc.subjectStabilityen_US
dc.subjectBoundary-value-problemsen_US
dc.subjectParabolic equationsen_US
dc.titleSecond order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operatoren_US
dc.typeProceedings Paperen_US
dc.identifier.wos000302239800147tr_TR
dc.identifier.scopus2-s2.0-81855203191tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0003-1375-2503tr_TR
dc.identifier.startpage597tr_TR
dc.identifier.endpage600tr_TR
dc.identifier.volume1389tr_TR
dc.relation.journalNumerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedingsen_US
dc.contributor.buuauthorYıldırım, Özgür-
dc.contributor.researcheridK-3041-2013tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematicsen_US
dc.subject.wosApplieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid35775025200tr_TR
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Third Order Differential Equationen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.