Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/24059
Başlık: | Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator |
Yazarlar: | Ashyralyev, Allaberen Simos, Theodore E. Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0003-1375-2503 Yıldırım, Özgür K-3041-2013 35775025200 |
Anahtar kelimeler: | Mathematics Hyperbolic equation Nonlocal boundary value problems Stability Boundary-value-problems Parabolic equations |
Yayın Tarihi: | 2011 |
Yayıncı: | Amer Inst Pyhsics |
Atıf: | Ashyralyev, A. vd. (2011). "Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator". ed. T. E. Simos. Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedings, 1389, 597-600. |
Özet: | In the present paper, two new second order of accuracy absolutely stable difference schemes are presented for the nonlocal boundary value problem { d(2)u(t)/dt(2) + Au(t) = f(t) (0 <= t <= 1), u(0) = Sigma(n)(j=1) alpha(j)u(lambda(j)) + phi, u(t)(0) = Sigma(n)(j=1) beta(j)u(t)(lambda(j)) + psi, 0 < lambda(1) < lambda(2) < ... < lambda(n) <= 1 for differential equations in a Hilbert space H with the self-adjoint positive definite operator A. The stability estimates for the solutions of these difference schemes are established. In practice, one-dimensional hyperbolic equation with nonlocal boundary conditions and multidimensional hyperbolic equation with Dirichlet conditions are considered. The stability estimates for the solutions of difference schemes for the nonlocal boundary value hyperbolic problems are obtained and the numerical results are presented to support our theoretical statements. |
Açıklama: | Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur. |
URI: | https://doi.org/10.1063/1.3636801 https://aip.scitation.org/doi/10.1063/1.3636801 http://hdl.handle.net/11452/24059 |
ISBN: | 978-0-7354-0956-9 |
ISSN: | 0094-243X |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.