Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/24059
Başlık: Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator
Yazarlar: Ashyralyev, Allaberen
Simos, ‪Theodore E.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0003-1375-2503
Yıldırım, Özgür
K-3041-2013
35775025200
Anahtar kelimeler: Mathematics
Hyperbolic equation
Nonlocal boundary value problems
Stability
Boundary-value-problems
Parabolic equations
Yayın Tarihi: 2011
Yayıncı: Amer Inst Pyhsics
Atıf: Ashyralyev, A. vd. (2011). "Second order of accuracy stable difference schemes for hyperbolic problems subject to nonlocal conditions with self-adjoint operator". ed. T. E. Simos. Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, AIP Conference Proceedings, 1389, 597-600.
Özet: In the present paper, two new second order of accuracy absolutely stable difference schemes are presented for the nonlocal boundary value problem { d(2)u(t)/dt(2) + Au(t) = f(t) (0 <= t <= 1), u(0) = Sigma(n)(j=1) alpha(j)u(lambda(j)) + phi, u(t)(0) = Sigma(n)(j=1) beta(j)u(t)(lambda(j)) + psi, 0 < lambda(1) < lambda(2) < ... < lambda(n) <= 1 for differential equations in a Hilbert space H with the self-adjoint positive definite operator A. The stability estimates for the solutions of these difference schemes are established. In practice, one-dimensional hyperbolic equation with nonlocal boundary conditions and multidimensional hyperbolic equation with Dirichlet conditions are considered. The stability estimates for the solutions of difference schemes for the nonlocal boundary value hyperbolic problems are obtained and the numerical results are presented to support our theoretical statements.
Açıklama: Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
URI: https://doi.org/10.1063/1.3636801
https://aip.scitation.org/doi/10.1063/1.3636801
http://hdl.handle.net/11452/24059
ISBN: 978-0-7354-0956-9
ISSN: 0094-243X
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.