Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/24107
Başlık: | Stable difference schemes for the hyperbolic problems subject to nonlocal boundary conditions with self-adjoint operator |
Yazarlar: | Ashyralyev, Allaberen Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0003-1375-2503 Yıldırım, Özgür K-3041-2013 35775025200 |
Anahtar kelimeler: | Mathematics Hyperbolic equation Nonlocal boundary value problems Stability Partial differential equations Accuracy difference schemes Difference schemes Dirichlet condition Hyperbolic equations Hyperbolic problems Multidimensional hyperbolic equations Non-local boundary conditions Nonlocal boundary Nonlocal boundary value problems Numerical solution Second orders Self adjoint operator Stability estimates Mathematical operators |
Yayın Tarihi: | 1-Eki-2011 |
Yayıncı: | Elsevier |
Atıf: | Ashyralyev, A. ve Yıldırım, Ö. (2011). "Stable difference schemes for the hyperbolic problems subject to nonlocal boundary conditions with self-adjoint operator". Applied Mathematics and Computation, 218(3), Special Issue, 1124-1131. |
Özet: | In the present paper the first and second orders of accuracy difference schemes for the numerical solution of multidimensional hyperbolic equations with nonlocal boundary and Dirichlet conditions are presented. The stability estimates for the solution of difference schemes are obtained. A method is used for solving these difference schemes in the case of one dimensional hyperbolic equation. |
URI: | https://doi.org/10.1016/j.amc.2011.03.155 https://www.sciencedirect.com/science/article/pii/S0096300311005352 http://hdl.handle.net/11452/24107 |
ISSN: | 0096-3003 1873-5649 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.