Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/24273
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cappelletti, Montano Beniamino | - |
dc.date.accessioned | 2022-01-24T12:39:46Z | - |
dc.date.available | 2022-01-24T12:39:46Z | - |
dc.date.issued | 2012-12 | - |
dc.identifier.citation | Cappelletti, M. B. vd. (2012). "Nullity conditions in paracontact geometry". Differential Geometry and its Applications, 30(6), 665-693. | en_US |
dc.identifier.issn | 0926-2245 | - |
dc.identifier.issn | 1872-6984 | - |
dc.identifier.uri | https://doi.org/10.1016/j.difgeo.2012.09.006 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0926224512000861 | - |
dc.identifier.uri | http://hdl.handle.net/11452/24273 | - |
dc.description.abstract | The paper is a complete study of paracontact metric manifolds for which the Reeb vector field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for some real numbers (kappa) over bar and (mu) over bar). This class of pseudo-Riemannian manifolds, which includes para-Sasakian manifolds, was recently defined in Cappelletti Montano (2010) [13]. In this paper we show in fact that there is a kind of duality between those manifolds and contact metric (kappa, mu)-spaces. In particular, we prove that, under some natural assumption, any such paracontact metric manifold admits a compatible contact metric (kappa, mu)-structure (eventually Sasakian). Moreover, we prove that the nullity condition is invariant under D-homothetic deformations and determines the whole curvature tensor field completely. Finally non-trivial examples in any dimension are presented and the many differences with the contact metric case, due to the non-positive definiteness of the metric, are discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Paracontact metric manifold | en_US |
dc.subject | Para-sasakian | en_US |
dc.subject | Contact metric manifold | en_US |
dc.subject | Kappa, mu-manifold | en_US |
dc.subject | Legendre foliation | en_US |
dc.subject | Contact metric kappa | en_US |
dc.subject | Manifolds | en_US |
dc.title | Nullity conditions in paracontact geometry | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000313917800010 | tr_TR |
dc.identifier.scopus | 2-s2.0-84867468143 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludaǧ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 665 | tr_TR |
dc.identifier.endpage | 693 | tr_TR |
dc.identifier.volume | 30 | tr_TR |
dc.identifier.issue | 6 | tr_TR |
dc.relation.journal | Differential Geometry and its Applications | en_US |
dc.contributor.buuauthor | Küpeli, Erken İrem | - |
dc.contributor.buuauthor | Murathan, Cengizhan | - |
dc.contributor.researcherid | ABH-3658-2020 | tr_TR |
dc.contributor.researcherid | ABE-8167-2020 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 (Mathematics) | en_US |
dc.wos.quartile | Q4 (Mathematics, applied) | en_US |
dc.contributor.scopusid | 55623226100 | tr_TR |
dc.contributor.scopusid | 6506718146 | tr_TR |
dc.subject.scopus | Slant Submanifold; Kaehler Manifold; Sasakian Space Form | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Küpeli_vd_2012.pdf | 456.52 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License