Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCappelletti, Montano Beniamino-
dc.date.accessioned2022-01-24T12:39:46Z-
dc.date.available2022-01-24T12:39:46Z-
dc.date.issued2012-12-
dc.identifier.citationCappelletti, M. B. vd. (2012). "Nullity conditions in paracontact geometry". Differential Geometry and its Applications, 30(6), 665-693.en_US
dc.identifier.issn0926-2245-
dc.identifier.issn1872-6984-
dc.identifier.urihttps://doi.org/10.1016/j.difgeo.2012.09.006-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0926224512000861-
dc.identifier.urihttp://hdl.handle.net/11452/24273-
dc.description.abstractThe paper is a complete study of paracontact metric manifolds for which the Reeb vector field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for some real numbers (kappa) over bar and (mu) over bar). This class of pseudo-Riemannian manifolds, which includes para-Sasakian manifolds, was recently defined in Cappelletti Montano (2010) [13]. In this paper we show in fact that there is a kind of duality between those manifolds and contact metric (kappa, mu)-spaces. In particular, we prove that, under some natural assumption, any such paracontact metric manifold admits a compatible contact metric (kappa, mu)-structure (eventually Sasakian). Moreover, we prove that the nullity condition is invariant under D-homothetic deformations and determines the whole curvature tensor field completely. Finally non-trivial examples in any dimension are presented and the many differences with the contact metric case, due to the non-positive definiteness of the metric, are discussed.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectParacontact metric manifolden_US
dc.subjectPara-sasakianen_US
dc.subjectContact metric manifolden_US
dc.subjectKappa, mu-manifolden_US
dc.subjectLegendre foliationen_US
dc.subjectContact metric kappaen_US
dc.subjectManifoldsen_US
dc.titleNullity conditions in paracontact geometryen_US
dc.typeArticleen_US
dc.identifier.wos000313917800010tr_TR
dc.identifier.scopus2-s2.0-84867468143tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludaǧ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.identifier.startpage665tr_TR
dc.identifier.endpage693tr_TR
dc.identifier.volume30tr_TR
dc.identifier.issue6tr_TR
dc.relation.journalDifferential Geometry and its Applicationsen_US
dc.contributor.buuauthorKüpeli, Erken İrem-
dc.contributor.buuauthorMurathan, Cengizhan-
dc.contributor.researcheridABH-3658-2020tr_TR
dc.contributor.researcheridABE-8167-2020tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3 (Mathematics)en_US
dc.wos.quartileQ4 (Mathematics, applied)en_US
dc.contributor.scopusid55623226100tr_TR
dc.contributor.scopusid6506718146tr_TR
dc.subject.scopusSlant Submanifold; Kaehler Manifold; Sasakian Space Formen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Küpeli_vd_2012.pdf456.52 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons