Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24509
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-02-17T06:53:42Z-
dc.date.available2022-02-17T06:53:42Z-
dc.date.issued2011-10-
dc.identifier.citationTekcan, A. (2011). "The number of solutions of pell equations x2 -ky2 = N and x2+xy- Ky2 = N over Fp". Ars Combinatoria, 102, 225-236.en_US
dc.identifier.issn0381-7032-
dc.identifier.urihttp://hdl.handle.net/11452/24509-
dc.description.abstractLet p be a prime number such that p equivalent to 1, 3(mod 4), let F-p, be a finite field, let N is an element of F-p* = F-p - {0} be a fixed. Let P-p(k) (N) : x(2) - ky(2) = N and (P) over tilde (k)(p)(N) : x(2) + xy - ky(2) = N be two Pell equations over F-p, where k = p-1/4 or k = p-3/4, respectively. Let P-p(k)(N)(F-p) and (P) over tilde (k)(p)(N)(F-p) denote the set of integer solutions of the Pell equations P-p(k)(N) and (P) over tilde (k)(p)(N), respectively. In the first section we give some preliminaries from general Pell equation x(2) - ky(2) = +/- N. In the second section, we determine the number of integer solutions of P-p(k)(N). We proved that P-p(k)(N)(F-p) = p+ 1 if p equivalent to 1(mod 4) or p equivalent to 7(mod 12) and P-p(k)(N)(F-p) = p - 1 if p equivalent to 11(mod 12). In the third section we consider the Pell equation (P) over tilde (k)(p)(N). We proved that (P) over tilde (k)(p)(N)(F-p) = 2p if p equivalent to 1(mod 4) and N is an element of Q(p); (P) over tilde (k)(p)(N)(F-p) = 0 if p equivalent to 1(mod 4) and N is not an element of Q(p) ; (P) over tilde (k)(p)(N)(F-p) = p + 1 if p equivalent to 3(mod 4).en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Res CTRen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectPell equationen_US
dc.subjectSolutions of the Pell equationen_US
dc.subjectFinite fielden_US
dc.titleThe number of solutions of pell equations x2 -ky2 = N and x2+xy- Ky2 = N over Fpen_US
dc.typeArticleen_US
dc.identifier.wos000295492600019tr_TR
dc.identifier.scopus2-s2.0-80053963696tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.identifier.startpage225tr_TR
dc.identifier.endpage236tr_TR
dc.identifier.volume102tr_TR
dc.relation.journalArs Combinatoriaen_US
dc.contributor.buuauthorTekcan, Ahmet-
dc.contributor.researcheridAAH-8518-2021tr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid55883777900tr_TR
dc.subject.scopusReal Quadratic Fields; Pell's Equation; Number Fielden_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.