Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/24509
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-02-17T06:53:42Z | - |
dc.date.available | 2022-02-17T06:53:42Z | - |
dc.date.issued | 2011-10 | - |
dc.identifier.citation | Tekcan, A. (2011). "The number of solutions of pell equations x2 -ky2 = N and x2+xy- Ky2 = N over Fp". Ars Combinatoria, 102, 225-236. | en_US |
dc.identifier.issn | 0381-7032 | - |
dc.identifier.uri | http://hdl.handle.net/11452/24509 | - |
dc.description.abstract | Let p be a prime number such that p equivalent to 1, 3(mod 4), let F-p, be a finite field, let N is an element of F-p* = F-p - {0} be a fixed. Let P-p(k) (N) : x(2) - ky(2) = N and (P) over tilde (k)(p)(N) : x(2) + xy - ky(2) = N be two Pell equations over F-p, where k = p-1/4 or k = p-3/4, respectively. Let P-p(k)(N)(F-p) and (P) over tilde (k)(p)(N)(F-p) denote the set of integer solutions of the Pell equations P-p(k)(N) and (P) over tilde (k)(p)(N), respectively. In the first section we give some preliminaries from general Pell equation x(2) - ky(2) = +/- N. In the second section, we determine the number of integer solutions of P-p(k)(N). We proved that P-p(k)(N)(F-p) = p+ 1 if p equivalent to 1(mod 4) or p equivalent to 7(mod 12) and P-p(k)(N)(F-p) = p - 1 if p equivalent to 11(mod 12). In the third section we consider the Pell equation (P) over tilde (k)(p)(N). We proved that (P) over tilde (k)(p)(N)(F-p) = 2p if p equivalent to 1(mod 4) and N is an element of Q(p); (P) over tilde (k)(p)(N)(F-p) = 0 if p equivalent to 1(mod 4) and N is not an element of Q(p) ; (P) over tilde (k)(p)(N)(F-p) = p + 1 if p equivalent to 3(mod 4). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Charles Babbage Res CTR | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Pell equation | en_US |
dc.subject | Solutions of the Pell equation | en_US |
dc.subject | Finite field | en_US |
dc.title | The number of solutions of pell equations x2 -ky2 = N and x2+xy- Ky2 = N over Fp | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000295492600019 | tr_TR |
dc.identifier.scopus | 2-s2.0-80053963696 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.identifier.startpage | 225 | tr_TR |
dc.identifier.endpage | 236 | tr_TR |
dc.identifier.volume | 102 | tr_TR |
dc.relation.journal | Ars Combinatoria | en_US |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Real Quadratic Fields; Pell's Equation; Number Field | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.