Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAminov, Yu A.-
dc.contributor.authorBayram, Bengü Kılıç-
dc.contributor.authorÖztürk, Günay-
dc.date.accessioned2022-02-18T12:43:48Z-
dc.date.available2022-02-18T12:43:48Z-
dc.date.issued2011-
dc.identifier.citationAminov, Y. vd. (2011). "On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side". Journal of Mathematical Physics, Analysis, Geometry, 7(3), 203-211.en_US
dc.identifier.issn1812-9471-
dc.identifier.issn1817-5805-
dc.identifier.urihttp://hdl.handle.net/11452/24534-
dc.description.abstractFor the Monge-Ampere equation Z(xx)Z(yy) - Z(xy)(2) = b(20)(x2)+b(11).xy+b(02y)(2)+ b(00) we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b(20)b(02) - b(11)(2) > 0, then the solution also does not exist. If 4b(20)b(02) - b(11)(2) = 0, then we have solutions.en_US
dc.language.isoenen_US
dc.publisherB Verkin Inst Low Temperature Physics & Engineering Nas Ukraen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectPhysicsen_US
dc.subjectMonge-Ampere equationen_US
dc.subjectPolynomialen_US
dc.subjectConvex surfaceen_US
dc.titleOn the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right sideen_US
dc.typeArticleen_US
dc.identifier.wos000301173200001tr_TR
dc.identifier.scopus2-s2.0-84883435474tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0001-5861-0184tr_TR
dc.contributor.orcid0000-0002-1440-7050tr_TR
dc.identifier.startpage203tr_TR
dc.identifier.endpage211tr_TR
dc.identifier.volume7tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalJournal of Mathematical Physics, Analysis, Geometryen_US
dc.contributor.buuauthorArslan, Kadri-
dc.contributor.buuauthorBulca, Betül-
dc.contributor.buuauthorMurathan, Cengizhan-
dc.contributor.researcheridABH-3658-2020tr_TR
dc.contributor.researcheridAAG-7693-2021tr_TR
dc.contributor.researcheridAAG-8775-2021tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.subject.wosPhysics, mathematicalen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6603079141tr_TR
dc.contributor.scopusid35226209600tr_TR
dc.contributor.scopusid6506718146tr_TR
dc.subject.scopusHessian; Entire Solution; Monge-Ampère Equationen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.