Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24534
Title: On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side
Authors: Aminov, Yu A.
Bayram, Bengü Kılıç
Öztürk, Günay
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0001-5861-0184
0000-0002-1440-7050
Arslan, Kadri
Bulca, Betül
Murathan, Cengizhan
ABH-3658-2020
AAG-7693-2021
AAG-8775-2021
6603079141
35226209600
6506718146
Keywords: Mathematics
Physics
Monge-Ampere equation
Polynomial
Convex surface
Issue Date: 2011
Publisher: B Verkin Inst Low Temperature Physics & Engineering Nas Ukra
Citation: Aminov, Y. vd. (2011). "On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side". Journal of Mathematical Physics, Analysis, Geometry, 7(3), 203-211.
Abstract: For the Monge-Ampere equation Z(xx)Z(yy) - Z(xy)(2) = b(20)(x2)+b(11).xy+b(02y)(2)+ b(00) we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b(20)b(02) - b(11)(2) > 0, then the solution also does not exist. If 4b(20)b(02) - b(11)(2) = 0, then we have solutions.
URI: http://hdl.handle.net/11452/24534
ISSN: 1812-9471
1817-5805
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.