Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞimşek, Yılmaz-
dc.contributor.authorSoydan, Gökhan-
dc.contributor.authorSimos, T. E.-
dc.contributor.authorPsihoyios, G.-
dc.contributor.authorTsitouras, C.-
dc.date.accessioned2022-03-14T11:31:30Z-
dc.date.available2022-03-14T11:31:30Z-
dc.date.issued2009-
dc.identifier.citationCangül, İ. N. vd. (2009). "A p-adic Look at the Diophantine equation x2 + 112k = yn". ed. T. E. Simos vd. Numerical Analysis and Applied Mathematics, vols 1 and 2, AIP Conference Proceedings, 1168, 275 - 277.en_US
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.3241447-
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.3241447-
dc.identifier.urihttp://hdl.handle.net/11452/24988-
dc.descriptionBu çalışma, 18-22 Eylül 2009 tarihleri arasında Rethymnon[Yunanistan]’da düzenlenen Exponential diophantine equationsprimitive divisors’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractWe find all solutions of Diophantine equation x(2) + 11(2k) = y(n), x >= 1, y >= 1, k is an element of N, n >= 3. We give p-adic interpretation of this equation.en_US
dc.description.sponsorshipAkdeniz Üniversitesitr_TR
dc.description.sponsorshipGreek Minist Educ & Religious Affairsen_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci & Engnen_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExponential diophantine equationsen_US
dc.subjectPrimitive divisorsen_US
dc.subjectMathematicsen_US
dc.subjectPhysicsen_US
dc.titleA p-adic Look at the Diophantine equation x2 + 112k = ynen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000273023600068tr_TR
dc.identifier.scopus2-s2.0-70450206194tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bap2008-31tr_TR
dc.relation.bap2008-51tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage275tr_TR
dc.identifier.endpage277tr_TR
dc.identifier.volume1168tr_TR
dc.relation.journalNumerical Analysis and Applied Mathematics, vols 1 and 2 , AIP Conference Proceedingsen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosPhysics, mathematicalen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2009.pdf76.92 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons