Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/25419
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karpuz, Eylem Güzel | - |
dc.contributor.author | Ateş, Fırat | - |
dc.contributor.author | Çevik, Ahmet Sinan | - |
dc.contributor.author | Maden, Ayşe Dilek Güngör | - |
dc.date.accessioned | 2022-03-30T06:17:59Z | - |
dc.date.available | 2022-03-30T06:17:59Z | - |
dc.date.issued | 2011-10 | - |
dc.identifier.citation | Karpuz, E. G. vd. (2011). "The next step of the word problem over monoids". Applied Mathematics and Computation, 218(3), 794-798. | en_US |
dc.identifier.issn | 0096-3003 | - |
dc.identifier.issn | 1873-5649 | - |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2011.03.076 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0096300311004449 | - |
dc.identifier.uri | http://hdl.handle.net/11452/25419 | - |
dc.description.abstract | It is known that a group presentation P can be regarded as a 2-complex with a single 0-cell. Thus we can consider a 3-complex with a single 0-cell which is known as a 3-presentation. Similarly, we can also consider 3-presentations for monoids. In this paper, by using spherical monoid pictures, we show that there exists a finite 3-monoid-presentation which has unsolvable "generalized identity problem'' that can be thought as the next step (or one-dimension higher) of the word problem for monoids. We note that the method used in this paper has chemical and physical applications. | en_US |
dc.description.sponsorship | Selçuk Üniversitesi | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Monoid pictures | en_US |
dc.subject | Word problem | en_US |
dc.subject | Presentation | en_US |
dc.subject | Identity problem | en_US |
dc.subject | Homological finiteness condition | en_US |
dc.subject | Group presentation | en_US |
dc.subject | Identity problem | en_US |
dc.subject | Monoid pictures | en_US |
dc.subject | Monoids | en_US |
dc.subject | One-dimension | en_US |
dc.subject | Physical application | en_US |
dc.subject | Presentation | en_US |
dc.subject | Word problem | en_US |
dc.subject | Algebra | en_US |
dc.title | The next step of the word problem over monoids | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000294298400030 | tr_TR |
dc.identifier.scopus | 2-s2.0-80052269740 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/MatematikBölümü. | tr_TR |
dc.relation.bap | 2006/40 | tr_TR |
dc.relation.bap | 2008/31 | tr_TR |
dc.relation.bap | 2008/54 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.startpage | 794 | tr_TR |
dc.identifier.endpage | 798 | tr_TR |
dc.identifier.volume | 218 | tr_TR |
dc.identifier.issue | 3 | tr_TR |
dc.relation.journal | Applied Mathematics and Computation | en_US |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Monoids; Inverse Semigroup; Word Problem | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cangül_vd_2011.pdf | 537.04 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License