Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/25463
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dyskin, Evgeny | - |
dc.contributor.author | Lansing, Lawrence S. | - |
dc.contributor.author | Bharali, Dhruba Jyoti | - |
dc.contributor.author | Mousa, Shaymaa S. | - |
dc.contributor.author | Bridoux, Alexandre | - |
dc.contributor.author | Hercbergs, Aleck A. | - |
dc.contributor.author | Lin, Hungyung | - |
dc.contributor.author | Davis, Faith B. | - |
dc.contributor.author | Glinsky, Gennadi Victor | - |
dc.contributor.author | Glinskii, Anna B. | - |
dc.contributor.author | Ma, J. | - |
dc.contributor.author | Davis, Paul J. | - |
dc.contributor.author | Mousa, S. A. | - |
dc.date.accessioned | 2022-03-30T13:45:33Z | - |
dc.date.available | 2022-03-30T13:45:33Z | - |
dc.date.issued | 2010-04 | - |
dc.identifier.citation | Yalçın, M. vd. (2010). "Tetraiodothyroacetic acid (Tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid". Journal of Clinical Endocrinology and Metabolism, 95(4), 1972-1980. | en_US |
dc.identifier.issn | 0021-972X | - |
dc.identifier.issn | 1945-7197 | - |
dc.identifier.uri | https://doi.org/10.1210/jc.2009-1926 | - |
dc.identifier.uri | https://academic.oup.com/jcem/article/95/4/1972/2597596?login=true | - |
dc.identifier.uri | http://hdl.handle.net/11452/25463 | - |
dc.description.abstract | Context: Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alpha v beta 3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. Objective: We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. Design: h-MTCcells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 mu g/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. Results: In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. Conclusions: Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models. | en_US |
dc.description.sponsorship | Charitable Leadership Foundation/Medical Technology Acceleration Program | en_US |
dc.description.sponsorship | Pharmaceutical Research Institute of Albany College of Pharmacy | en_US |
dc.language.iso | en | en_US |
dc.publisher | Endocrine | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Activated protein-kinase | en_US |
dc.subject | Cell-surface receptor | en_US |
dc.subject | Alpha-catenin | en_US |
dc.subject | Proangiogenic action | en_US |
dc.subject | Microarray analysis | en_US |
dc.subject | Gamma-catenin | en_US |
dc.subject | E-cadherin | en_US |
dc.subject | Hormone | en_US |
dc.subject | Expression | en_US |
dc.subject | Integrin | en_US |
dc.subject | Endocrinology & metabolism | en_US |
dc.subject | Animalia | en_US |
dc.subject | Mus musculus | en_US |
dc.subject.mesh | Animals | en_US |
dc.subject.mesh | Antineoplastic agents | en_US |
dc.subject.mesh | Body weight | en_US |
dc.subject.mesh | Carcinoma, medullary | en_US |
dc.subject.mesh | Cells, cultured | en_US |
dc.subject.mesh | Chick embryo | en_US |
dc.subject.mesh | Chorioallantoic membrane | en_US |
dc.subject.mesh | Excipients | en_US |
dc.subject.mesh | Female | en_US |
dc.subject.mesh | Hemoglobins | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Lactic acid | en_US |
dc.subject.mesh | Mice | en_US |
dc.subject.mesh | Mice, nude | en_US |
dc.subject.mesh | Nanoparticles | en_US |
dc.subject.mesh | Neovascularization, pathologic | en_US |
dc.subject.mesh | Oligonucleotide array sequence analysis | en_US |
dc.subject.mesh | Polyglycolic acid | en_US |
dc.subject.mesh | Reverse transcriptase polymerase chain reaction | en_US |
dc.subject.mesh | RNA, neoplasm | en_US |
dc.subject.mesh | Thyroid neoplasms | en_US |
dc.subject.mesh | Thyroxine | en_US |
dc.subject.mesh | Xenograft model antitumor assays | en_US |
dc.title | Tetraiodothyroacetic acid (Tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000276402300060 | tr_TR |
dc.identifier.scopus | 2-s2.0-77951630790 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Veterinerlik Fakültesi/Temel Bilimler Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-5600-8162 | tr_TR |
dc.identifier.startpage | 1972 | tr_TR |
dc.identifier.endpage | 1980 | tr_TR |
dc.identifier.volume | 95 | tr_TR |
dc.identifier.issue | 4 | tr_TR |
dc.relation.journal | Journal of Clinical Endocrinology and Metabolism | en_US |
dc.contributor.buuauthor | Yalçın, Murat | - |
dc.contributor.researcherid | AAG-6956-2021 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Sanayi | tr_TR |
dc.identifier.pubmed | 20133461 | tr_TR |
dc.subject.wos | Endocrinology & metabolism | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.pubmed | PubMed | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 57192959734 | tr_TR |
dc.subject.scopus | Integrin; Thyroid Hormones; Nano-Diamino-Tetrac | en_US |
dc.subject.emtree | Alpha catenin | en_US |
dc.subject.emtree | Angiogenesis inhibitor | en_US |
dc.subject.emtree | Caspase 2 | en_US |
dc.subject.emtree | Caspase 8 associated protein 2 | en_US |
dc.subject.emtree | DFFA protein | en_US |
dc.subject.emtree | Fas antigen | en_US |
dc.subject.emtree | Glyceraldehyde 3 phosphate dehydrogenase | en_US |
dc.subject.emtree | Hemoglobin | en_US |
dc.subject.emtree | Messenger RNA | en_US |
dc.subject.emtree | Nanoparticle | en_US |
dc.subject.emtree | Protein | en_US |
dc.subject.emtree | Tetraiodothyroacetic acid | en_US |
dc.subject.emtree | Thrombospondin 1 | en_US |
dc.subject.emtree | Unclassified drug | en_US |
dc.subject.emtree | Vasculotropin A | en_US |
dc.subject.emtree | Antineoplastic agent | en_US |
dc.subject.emtree | Drug derivative | en_US |
dc.subject.emtree | Excipient | en_US |
dc.subject.emtree | Hemoglobin | en_US |
dc.subject.emtree | Lactic acid | en_US |
dc.subject.emtree | Nanoparticle | en_US |
dc.subject.emtree | Polyglycolic acid | en_US |
dc.subject.emtree | Polylactic acid polyglycolic acid copolymer | en_US |
dc.subject.emtree | Polylactic acid-polyglycolic acid copolymer | en_US |
dc.subject.emtree | RNA | en_US |
dc.subject.emtree | Tetraiodothyroacetic acid | en_US |
dc.subject.emtree | Thyroxine | en_US |
dc.subject.emtree | Animal experiment | en_US |
dc.subject.emtree | Animal tissue | en_US |
dc.subject.emtree | Antiangiogenic activity | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Cancer cell culture | en_US |
dc.subject.emtree | Cancer inhibition | en_US |
dc.subject.emtree | Cancer size | en_US |
dc.subject.emtree | Cell cycle arrest | en_US |
dc.subject.emtree | Chorioallantois | en_US |
dc.subject.emtree | Controlled study | en_US |
dc.subject.emtree | Drug distribution | en_US |
dc.subject.emtree | Drug effect | en_US |
dc.subject.emtree | Drug efficacy | en_US |
dc.subject.emtree | Female | en_US |
dc.subject.emtree | Gene expression | en_US |
dc.subject.emtree | Human | en_US |
dc.subject.emtree | Human cell | en_US |
dc.subject.emtree | Human cell culture | en_US |
dc.subject.emtree | Microarray analysis | en_US |
dc.subject.emtree | Mouse | en_US |
dc.subject.emtree | Nonhuman | en_US |
dc.subject.emtree | Priority journal | en_US |
dc.subject.emtree | Real time polymerase chain reaction | en_US |
dc.subject.emtree | Thyroid medullary carcinoma | en_US |
dc.subject.emtree | Tissue level | en_US |
dc.subject.emtree | Animal | en_US |
dc.subject.emtree | Biosynthesis | en_US |
dc.subject.emtree | Body weight | en_US |
dc.subject.emtree | Cell culture | en_US |
dc.subject.emtree | Chick embryo | en_US |
dc.subject.emtree | DNA microarray | en_US |
dc.subject.emtree | Drug screening | en_US |
dc.subject.emtree | Genetics | en_US |
dc.subject.emtree | Medullary carcinoma | en_US |
dc.subject.emtree | Metabolism | en_US |
dc.subject.emtree | Neovascularization (pathology) | en_US |
dc.subject.emtree | Nude mouse | en_US |
dc.subject.emtree | Pathology | en_US |
dc.subject.emtree | Reverse transcription polymerase chain reaction | en_US |
dc.subject.emtree | Thyroid tumor | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yalçın_vd_2010.pdf | 494.77 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License