Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/25794
Başlık: Novel guess functions for efficient analysis of raman fiber amplifiers
Yazarlar: Gökhan, Fikri Serdar
Uludağ Üniversitesi/Mühendislik-Mimarlık Fakültesi/Elektronik Mühendisliği Bölümü.
Yılmaz, Güneş
7004543197
Anahtar kelimeler: Computer science
Engineering
Mathematics
MATLAB BVP solvers
Guess functions
Raman fiber amplifiers (RFAs)
Boundary value problems
Numerical analysis
Fiber amplifiers
Analytical approximation
Analytical jacobians
Continuation method
Design/methodology/approach
Efficient analysis
Fiber length
Gain fibers
High-power systems
Initial guess
Intrinsic property
Mesh points
N value
Numerical solution
Performance evaluation
Pump power
Raman fiber amplifiers
Signal waves
Runtimes
Simulation speed
Single pumps
Taylor expansions
Vectorization
MATLAB
Yayın Tarihi: 2012
Yayıncı: Emerald Group Publishing
Atıf: Gökhan, F. S. ve Yılmaz, G. (2012). "Novel guess functions for efficient analysis of raman fiber amplifiers". COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(2), 330-345.
Özet: Purpose - The aim of the paper is to demonstrate a fast numerical solution for Raman fiber amplifier equations using proposed guess functions and MATLAB intrinsic properties. MATLAB BVP solvers are addressed for the solution. Design/methodology/approach - The guess functions proposed for the solution of RFA equations using MATLAB BVP solvers are derived from Taylor expansion of pump and signal wave near the boundary to specifically obtain convergence for the initial mesh point. The guess functions increase simulation speed significantly. In order to improve the simulation speed further, vectorization and analytical Jacobians are introduced. Comparisons among bvp4c and bvp5c have been made with respect to total pump power, number of signals, vectorization with/without analytical Jacobians, fiber length, relative tolerance and continuation method. The simulations are performed to determine the effect of the run time on the choice of the number of equally spaced mesh points (N) in the initial guess, and thus optimal N values are found. Findings - MATLAB BVP solvers have been proven to be effective for the numerical solution of RFAs with the proposed guess functions. In particular, with vectorizing, run time reduction is between 2.1 and 5.4 times for bvp4c and between 1.6 and 2.1 times for bvp5c and in addition to vectorizing, with the introduction of the analytical Jacobians, the reduction is between 2.4 and 6.2 times for bvp4c and 1.7 and 2.2 times for bvp5c, respectively, depending on the total pump power between 1,000 mW and 2,000 mW and the number of signals. Also, simulation results show that the efficiency of the solution with proposed guess functions is improved more than six times compared with those of previously reported continuation methods. Results show that the proposed guess functions with the vectorization and analytical Jacobians can be used for the performance evaluation of RFAs for the high power systems/long gain fiber span. Practical implications - The robust improvement of the solution proposed in this paper lies in the fact that the derived guess functions for the RFAs are highly effective in the sense that they assist the solver to converge to the solution for any total pump power value in a wide range from 1 to 3,000 mW and for any fiber lengths ranging 1 to 200 km which are used in practical applications. Hence, it is practicable for the performance evaluation of the existing RFA networks. Originality/value - The novelty of this method is that, starting with the co-propagating single pump and signal RFA schema, the authors derived the guess function specifically for the initial mesh points rather than using its analytical approximations. Moreover, the solution is generalized for co-/counter propagating pumps/signals with the curve fitted coefficient(s).
URI: https://doi.org/10.1108/03321641211199782
https://www.emerald.com/insight/content/doi/10.1108/03321641211199782/full/html
http://hdl.handle.net/11452/25794
ISSN: 0332-1649
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Güneş_vd_2012.pdf313.48 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons