Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/26295
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorBayad, Abdelmejid-
dc.date.accessioned2022-05-06T07:17:44Z-
dc.date.available2022-05-06T07:17:44Z-
dc.date.issued2012-03-01-
dc.identifier.citationBayad, A. ve Cangül, İ. N. (2012). "The minimal polynomial of 2cos(pi/q) and Dickson polynomials". Applied Mathematics and Computation, 218(13), 7014-7022.en_US
dc.identifier.issn0096-3003-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2011.12.044-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0096300311015189-
dc.identifier.urihttp://hdl.handle.net/11452/26295-
dc.description.abstractThe number lambda(q) = 2cos(pi/q), q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many partial results about the minimal polynomial of this algebraic number. Here we obtain the general formula and it is Mobius inversion for this minimal polynomial by means of the Dickson polynomials and the Mobius inversion theory. Moreover, we investigate the homogeneous cyclotomic, Chebychev and Dickson polynomials in two variables and we show that our main results in one variable case nicely extend to this situation. In this paper, the deep results concerning these polynomials are proved by elementary arguments.en_US
dc.language.isoenen_US
dc.publisherElsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectHecke groupsen_US
dc.subjectMinimal polynomialsen_US
dc.subjectCyclotomic polynomialsen_US
dc.subjectDickson polynomialsen_US
dc.subjectMobius inversionen_US
dc.subjectComputational methodsen_US
dc.subjectMathematical techniquesen_US
dc.subjectChebychev polynomialsen_US
dc.subjectPolynomialsen_US
dc.titleThe minimal polynomial of 2cos(pi/q) and Dickson polynomialsen_US
dc.typeArticleen_US
dc.identifier.wos000300503700003tr_TR
dc.identifier.scopus2-s2.0-84856962086tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludaǧ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bap2006/40tr_TR
dc.relation.bap2008/31tr_TR
dc.relation.bap2008/54tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage7014tr_TR
dc.identifier.endpage7022tr_TR
dc.identifier.volume218tr_TR
dc.identifier.issue13tr_TR
dc.relation.journalApplied Mathematics and Computationen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosSCIEen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroupsen_US
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.