Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/26376
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇevik, Ahmet Sinan-
dc.contributor.authorŞimşek, Yılmaz-
dc.date.accessioned2022-05-11T06:48:04Z-
dc.date.available2022-05-11T06:48:04Z-
dc.date.issued2013-
dc.identifier.citationÇevik, A. S. vd. (2013). "Analysis approach to finite monoids". Fixed Point Theory and Applications, 1-18.en_US
dc.identifier.issn1687-1812-
dc.identifier.urihttps://doi.org/10.1186/1687-1812-2013-15-
dc.identifier.urihttps://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-15-
dc.identifier.urihttp://hdl.handle.net/11452/26376-
dc.description.abstractIn a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal.en_US
dc.description.sponsorshipSelçuk Üniversitesitr_TR
dc.description.sponsorshipAkdeniz Üniversitesitr_TR
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEfficiencyen_US
dc.subjectp-Cockcroft propertyen_US
dc.subjectSplit extensionen_US
dc.subjectGenerating functionsen_US
dc.subjectStirling numbersen_US
dc.subjectArray polynomialsen_US
dc.subjectSemidirect productsen_US
dc.subjectDerivation typeen_US
dc.subjectBernoullien_US
dc.subjectPresentationsen_US
dc.subjectEuleren_US
dc.titleAnalysis approach to finite monoidsen_US
dc.typeArticleen_US
dc.identifier.wos000315344900001tr_TR
dc.identifier.scopus2-s2.0-84902584114tr_TR
dc.relation.tubitakSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bapBAPtr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.endpage18tr_TR
dc.relation.journalFixed Point Theory and Applicationsen_US
dc.contributor.buuauthorCangül, Naci İsmail-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusSemigroup; Inverse Semigroup; Word Problemen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf509.96 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons