Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/26376
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çevik, Ahmet Sinan | - |
dc.contributor.author | Şimşek, Yılmaz | - |
dc.date.accessioned | 2022-05-11T06:48:04Z | - |
dc.date.available | 2022-05-11T06:48:04Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Çevik, A. S. vd. (2013). "Analysis approach to finite monoids". Fixed Point Theory and Applications, 1-18. | en_US |
dc.identifier.issn | 1687-1812 | - |
dc.identifier.uri | https://doi.org/10.1186/1687-1812-2013-15 | - |
dc.identifier.uri | https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-15 | - |
dc.identifier.uri | http://hdl.handle.net/11452/26376 | - |
dc.description.abstract | In a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal. | en_US |
dc.description.sponsorship | Selçuk Üniversitesi | tr_TR |
dc.description.sponsorship | Akdeniz Üniversitesi | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Efficiency | en_US |
dc.subject | p-Cockcroft property | en_US |
dc.subject | Split extension | en_US |
dc.subject | Generating functions | en_US |
dc.subject | Stirling numbers | en_US |
dc.subject | Array polynomials | en_US |
dc.subject | Semidirect products | en_US |
dc.subject | Derivation type | en_US |
dc.subject | Bernoulli | en_US |
dc.subject | Presentations | en_US |
dc.subject | Euler | en_US |
dc.title | Analysis approach to finite monoids | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000315344900001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84902584114 | tr_TR |
dc.relation.tubitak | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | BAP | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.startpage | 1 | tr_TR |
dc.identifier.endpage | 18 | tr_TR |
dc.relation.journal | Fixed Point Theory and Applications | en_US |
dc.contributor.buuauthor | Cangül, Naci İsmail | - |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Semigroup; Inverse Semigroup; Word Problem | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 509.96 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License