Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/26376
Başlık: Analysis approach to finite monoids
Yazarlar: Çevik, Ahmet Sinan
Şimşek, Yılmaz
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-0700-5774
Cangül, Naci İsmail
ABA-6206-2020
57189022403
Anahtar kelimeler: Efficiency
p-Cockcroft property
Split extension
Generating functions
Stirling numbers
Array polynomials
Semidirect products
Derivation type
Bernoulli
Presentations
Euler
Yayın Tarihi: 2013
Yayıncı: Springer International Publishing
Atıf: Çevik, A. S. vd. (2013). "Analysis approach to finite monoids". Fixed Point Theory and Applications, 1-18.
Özet: In a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal.
URI: https://doi.org/10.1186/1687-1812-2013-15
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-15
http://hdl.handle.net/11452/26376
ISSN: 1687-1812
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Cangül_vd_2013.pdf509.96 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons