Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/27005
Başlık: Ant Colony Optimization based clustering methodology
Yazarlar: Kayalıgil, Sinan
Özdemirel, Nur Evin
Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.
0000-0002-6260-0162
İnkaya, Tülin
AAH-2155-2021
24490728300
Anahtar kelimeler: Ant Colony Optimization
Clustering
Data set reduction
Multiple objectives
Automatic evolution
K-means
Algorithm
Hybridization
Density
Computer science
Cluster analysis
Function evaluation
Reduction
Clustering
Clustering solutions
Data set
Local characteristics
Multi-objective evaluations
Multiple-objectives
Neighborhood construction
Nondominated solutions
Ant colony optimization
Yayın Tarihi: Mar-2015
Yayıncı: Elsevier
Atıf: İnkaya, T. vd. (2015). "Ant Colony Optimization based clustering methodology". Applied Soft Computing, 28, 301-311.
Özet: In this work we consider spatial clustering problem with no a priori information. The number of clusters is unknown, and clusters may have arbitrary shapes and density differences. The proposed clustering methodology addresses several challenges of the clustering problem including solution evaluation, neighborhood construction, and data set reduction. In this context, we first introduce two objective functions, namely adjusted compactness and relative separation. Each objective function evaluates the clustering solution with respect to the local characteristics of the neighborhoods. This allows us to measure the quality of a wide range of clustering solutions without a priori information. Next, using the two objective functions we present a novel clustering methodology based on Ant Colony Optimization (ACO-C). ACO-C works in a multi-objective setting and yields a set of non-dominated solutions. ACO-C has two pre-processing steps: neighborhood construction and data set reduction. The former extracts the local characteristics of data points, whereas the latter is used for scalability. We compare the proposed methodology with other clustering approaches. The experimental results indicate that ACO-C outperforms the competing approaches. The multi-objective evaluation mechanism relative to the neighborhoods enhances the extraction of the arbitrary-shaped clusters having density variations.
URI: https://doi.org/10.1016/j.asoc.2014.11.060
https://www.sciencedirect.com/science/article/pii/S1568494614006334
http://hdl.handle.net/11452/27005
ISSN: 1568-4946
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.