Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/27329
Title: The minimal polynomials of 2cos(π/2k) over the rationals
Authors: İkikardeş, Nazlı Y.
Simos, T. E.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Demirci, Musa
Özgür, Birsen
Cangül, İsmail Naci
ABA-6206-2020
ABI-4127-2020
J-3505-2017
23566581100
54403501400
57189022403
Keywords: Mathematics
Hecke groups
Roots of unity
Chebycheff polynomials
Minimal polynomial
Issue Date: 2011
Publisher: Amer Inst Pyhsics
Citation: Demirci, M. vd. (2011). "The minimal polynomials of 2cos(π/2k) over the rationals". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 325-328.
Abstract: The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups of the first kind, and in the study of regular polyhedra. Here we obtained the minimal polynomial of this number by means of the better known Chebycheff polynomials and the set of roots on the extension Q(lambda(q)). We follow some kind of inductive method on the number q. The minimal polynomial is obtained for even q.
Description: Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
URI: https://doi.org/10.1063/1.3636731
https://aip.scitation.org/doi/abs/10.1063/1.3636731
http://hdl.handle.net/11452/27329
ISSN: 0094-243X
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.