Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/27468
Title: Convex subclass of harmonic starlike functions
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-0243-8263
0000-0003-1427-9279
Öztürk, Metin
Yalçın, Sibel
Yamankaradeniz, Mümin
ABC-6175-2020
AAE-9745-2020
AAG-5646-2021
7102665860
56207790300
6507468961
Keywords: Mathematics
Harmonic analysis
Mathematical models
Set theory
Theorem proving
Convex subclasses
Harmonic functions
Functions
Harmonic
Univalent
Starlike
Convex
Univalent-functions
Issue Date: 5-Jul-2004
Publisher: Elsevier
Citation: Öztürk, M. vd. (2004). “Convex subclass of harmonic starlike functions”. Applied Mathematics and Computation, 154(2), 449-459.
Abstract: Complex valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + (g) over bar, where h and g are analytic in U. We define and investigate a convex subclass of harmonic starlike functions of order alpha (0 less than or equal to a < 1). We obtain coefficient conditions, extreme points, distortion bounds, convolution conditions, and convex combination for the above class of harmonic functions.
URI: https://doi.org/10.1016/S0096-3003(03)00725-2
https://www.sciencedirect.com/science/article/pii/S0096300303007252
http://hdl.handle.net/11452/27468
ISSN: 0096-3003
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.