Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28348
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-08-24T12:58:45Z-
dc.date.available2022-08-24T12:58:45Z-
dc.date.issued2003-10-10-
dc.identifier.citationKarpuzoǧulları, S. Y. vd. (2003). “A subclass of harmonic univalent functions with negative coefficients”. Applied Mathematics and Computation, 142(2-3), 469-476.en_US
dc.identifier.issn0096-3003-
dc.identifier.urihttps://doi.org/10.1016/S0096-3003(02)00314-4-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0096300302003144-
dc.identifier.urihttp://hdl.handle.net/11452/28348-
dc.description.abstractComplex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f h + (g) over bar, where h and g are analytic in U. In this paper, consider the class HP(beta), (0 less than or equal to beta < 1) consisting of harmonic and univalent functions f = h + (g) over bar for which Re{ h'(z) + g'(z)} > beta. We give sufficient coefficient conditions for normalized harmonic functions in the class HP(beta). These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectHarmonic functionsen_US
dc.subjectExtreme pointsen_US
dc.subjectDistortion boundsen_US
dc.subjectComputation theoryen_US
dc.subjectFunctionsen_US
dc.subjectSet theoryen_US
dc.subjectDistortion boundsen_US
dc.subjectHarmonic analysisen_US
dc.titleA subclass of harmonic univalent functions with negative coefficientsen_US
dc.typeArticleen_US
dc.identifier.wos000183461200018tr_TR
dc.identifier.scopus2-s2.0-0038284924tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0243-8263tr_TR
dc.contributor.orcid0000-0003-1427-9279tr_TR
dc.identifier.startpage469tr_TR
dc.identifier.endpage476tr_TR
dc.identifier.volume142tr_TR
dc.identifier.issue2-3tr_TR
dc.relation.journalApplied Mathematics and Computationen_US
dc.contributor.buuauthorKarpuzoǧulları, Sibel Yalçın-
dc.contributor.buuauthorÖztürk, Metin-
dc.contributor.buuauthorYamankaradeniz, Mümin-
dc.contributor.researcheridAAG-5646-2021tr_TR
dc.contributor.researcheridABG-7532-2020tr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid6507638008tr_TR
dc.contributor.scopusid7102665860tr_TR
dc.contributor.scopusid6507468961tr_TR
dc.subject.scopusStarlike Functions; Analytic Function; Hankel Determinanten_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.