Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28348
Title: A subclass of harmonic univalent functions with negative coefficients
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-0243-8263
0000-0003-1427-9279
Karpuzoǧulları, Sibel Yalçın
Öztürk, Metin
Yamankaradeniz, Mümin
AAG-5646-2021
ABG-7532-2020
6507638008
7102665860
6507468961
Keywords: Mathematics
Harmonic functions
Extreme points
Distortion bounds
Computation theory
Functions
Set theory
Distortion bounds
Harmonic analysis
Issue Date: 10-Oct-2003
Publisher: Elsevier
Citation: Karpuzoǧulları, S. Y. vd. (2003). “A subclass of harmonic univalent functions with negative coefficients”. Applied Mathematics and Computation, 142(2-3), 469-476.
Abstract: Complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f h + (g) over bar, where h and g are analytic in U. In this paper, consider the class HP(beta), (0 less than or equal to beta < 1) consisting of harmonic and univalent functions f = h + (g) over bar for which Re{ h'(z) + g'(z)} > beta. We give sufficient coefficient conditions for normalized harmonic functions in the class HP(beta). These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.
URI: https://doi.org/10.1016/S0096-3003(02)00314-4
https://www.sciencedirect.com/science/article/pii/S0096300302003144
http://hdl.handle.net/11452/28348
ISSN: 0096-3003
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.