Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28353
Title: On generalized robertson-walker spacetimes satisfying some curvature condition
Authors: Deszcz, Ryszard
Hotloś, Marian
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0001-8619-8334
0000-0002-1440-7050
Arslan, Kadri
Ezentaş, Rıdvan
Murathan, Cengizhan
A-1802-2016
AAG-8775-2021
ABE-8167-2020
6603079141
6506973222
6506718146
Keywords: Warped product
Generalized Robertson-Walker spacetime
Einstein manifold
Quasi-Einstein manifold
Essentially conformally symmetric manifold
Tachibana tensor
Generalized Einstein metric condition
Pseudosymmetry type curvature condition
Ricci-pseudosymmetric hypersurface
Hypersurfaces
Geometry
Mathematics
Issue Date: 2014
Publisher: TÜBİTAK
Citation: Arslan, K. vd. (2014). "On generalized robertson-walker spacetimes satisfying some curvature condition". Turkish Journal of Mathematics, 38(2), 353-373.
Abstract: We give necessary and sufficient conditions for warped product manifolds (M, g), of dimension >= 4, with 1-dimensional base, and in particular, for generalized Robertson-Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R.C-C.R, formed from the curvature tensor R and the Weyl conformal curvature tensor C, is expressed by the Tachibana tensor Q(S,R) formed from the Ricci tensor S and R. We also construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S - alpha g) <= 1, for some alpha is an element of R, or non-quasi-Einstein.
URI: https://doi.org/10.3906/mat-1304-3
https://dergipark.org.tr/tr/pub/tbtkmath/article/145666
http://hdl.handle.net/11452/28353
ISSN: 1300-0098
1303-6149
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Arslan_vd_2014.pdf310.39 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons