Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28383
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-08-26T06:33:41Z-
dc.date.available2022-08-26T06:33:41Z-
dc.date.issued2010-01-
dc.identifier.citationTekcan, A. ve Özkoç, A. (2010). "The Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0". Revista Matematica Complutense, 23(1), 251-260.en_US
dc.identifier.issn1139-1138-
dc.identifier.issn1988-2807-
dc.identifier.urihttps://doi.org/10.1007/s13163-009-0009-8-
dc.identifier.urihttps://link.springer.com/article/10.1007/s13163-009-0009-8-
dc.identifier.urihttp://hdl.handle.net/11452/28383-
dc.description.abstractLet t >= 1 be an integer. In this work, we consider the number of integer solutions of Diophantine equation x(2) - (t(2) + t)y(2) - (4t + 2)x + (4t(2) + 4t)y = 0 over Z and also over finite fields F-p for primes p >= 5.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlagde
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiophantine equationen_US
dc.subjectPell equationen_US
dc.subjectMathematicsen_US
dc.titleThe Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0en_US
dc.typeArticleen_US
dc.identifier.wos000273040400014tr_TR
dc.identifier.scopus2-s2.0-77949911378tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.identifier.startpage251tr_TR
dc.identifier.endpage260tr_TR
dc.identifier.volume23tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalRevista Matematica Complutenseen_US
dc.contributor.buuauthorTekcan, Ahmet-
dc.contributor.buuauthorÖzkoç, Arzu-
dc.contributor.researcheridAAH-8518-2021tr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2 (Mathematics)en_US
dc.wos.quartileQ3 (Mathematics, applied)en_US
dc.contributor.scopusid55883777900tr_TR
dc.contributor.scopusid24485340700tr_TR
dc.subject.scopusReal Quadratic Fields; Pell's Equation; Number Fielden_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Tekcan_Özkoç_2010.pdf325.68 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons