Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/28383
Title: | The Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0 |
Authors: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. Tekcan, Ahmet Özkoç, Arzu AAH-8518-2021 55883777900 24485340700 |
Keywords: | Diophantine equation Pell equation Mathematics |
Issue Date: | Jan-2010 |
Publisher: | Springer-Verlag |
Citation: | Tekcan, A. ve Özkoç, A. (2010). "The Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0". Revista Matematica Complutense, 23(1), 251-260. |
Abstract: | Let t >= 1 be an integer. In this work, we consider the number of integer solutions of Diophantine equation x(2) - (t(2) + t)y(2) - (4t + 2)x + (4t(2) + 4t)y = 0 over Z and also over finite fields F-p for primes p >= 5. |
URI: | https://doi.org/10.1007/s13163-009-0009-8 https://link.springer.com/article/10.1007/s13163-009-0009-8 http://hdl.handle.net/11452/28383 |
ISSN: | 1139-1138 1988-2807 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tekcan_Özkoç_2010.pdf | 325.68 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License