Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28383
Title: The Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
Tekcan, Ahmet
Özkoç, Arzu
AAH-8518-2021
55883777900
24485340700
Keywords: Diophantine equation
Pell equation
Mathematics
Issue Date: Jan-2010
Publisher: Springer-Verlag
Citation: Tekcan, A. ve Özkoç, A. (2010). "The Diophantine equation x2 - (t2 + t)y2 - (4t + 2)x + (4t2 + 4t)y = 0". Revista Matematica Complutense, 23(1), 251-260.
Abstract: Let t >= 1 be an integer. In this work, we consider the number of integer solutions of Diophantine equation x(2) - (t(2) + t)y(2) - (4t + 2)x + (4t(2) + 4t)y = 0 over Z and also over finite fields F-p for primes p >= 5.
URI: https://doi.org/10.1007/s13163-009-0009-8
https://link.springer.com/article/10.1007/s13163-009-0009-8
http://hdl.handle.net/11452/28383
ISSN: 1139-1138
1988-2807
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Tekcan_Özkoç_2010.pdf325.68 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons