Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28714
Title: Quadratic diophantine equation x2 - (t2 - t)y2 - (4t - 2)x+(4t2 - 4t)y = 0
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
Özkoç, Arzu
Tekcan, Ahmet
AAH-8518-2021
24485340700
55883777900
Keywords: Diophantine equation
Pell equation
Mathematics
Issue Date: 2010
Publisher: Malaysian Mathematical Sciences
Citation: Özkoç, A. ve Tekcan, A. (2010). "Quadratic diophantine equation x2 - (t2 - t)y2 - (4t - 2)x+(4t2 - 4t)y = 0". Bulletin of the Malaysian Mathematical Sciences Society, 33(2), 273-280.
Abstract: Let t >= 2 be an integer. In this work, we consider the number of integer solutions of Diophantine equation D : x(2) - (t(2) - t)y(2) - (4t - 2)x + (4t(2) - 4t)y = 0 over Z. We also derive some recurrence relations on the integer solutions (x(n), y(n)) of D. In the last, section, we consider the same problem over finite fields F-p for primes p >= 5.
URI: http://hdl.handle.net/11452/28714
ISSN: 0126-6705
2180-4206
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.