Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/28714
Title: | Quadratic diophantine equation x2 - (t2 - t)y2 - (4t - 2)x+(4t2 - 4t)y = 0 |
Authors: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. Özkoç, Arzu Tekcan, Ahmet AAH-8518-2021 24485340700 55883777900 |
Keywords: | Diophantine equation Pell equation Mathematics |
Issue Date: | 2010 |
Publisher: | Malaysian Mathematical Sciences |
Citation: | Özkoç, A. ve Tekcan, A. (2010). "Quadratic diophantine equation x2 - (t2 - t)y2 - (4t - 2)x+(4t2 - 4t)y = 0". Bulletin of the Malaysian Mathematical Sciences Society, 33(2), 273-280. |
Abstract: | Let t >= 2 be an integer. In this work, we consider the number of integer solutions of Diophantine equation D : x(2) - (t(2) - t)y(2) - (4t - 2)x + (4t(2) - 4t)y = 0 over Z. We also derive some recurrence relations on the integer solutions (x(n), y(n)) of D. In the last, section, we consider the same problem over finite fields F-p for primes p >= 5. |
URI: | http://hdl.handle.net/11452/28714 |
ISSN: | 0126-6705 2180-4206 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.