Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimos, T. E.-
dc.date.accessioned2022-10-06T05:55:38Z-
dc.date.available2022-10-06T05:55:38Z-
dc.date.issued2011-
dc.identifier.citationÖzgür, B. vd. (2011). "Some properties of the minimal polynomials of 2cos(pi/q) for odd q". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 353-356.en_US
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.3636737-
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.3636737-
dc.identifier.urihttp://hdl.handle.net/11452/28981-
dc.descriptionBu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number. Here we obtain the minimal polynomial of this number by means of the better known Chebycheff polynomials for odd q and give some of their properties.en_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci & Engn (ESCMSE)en_US
dc.description.sponsorshipR. M. Santilli Fdnen_US
dc.language.isoenen_US
dc.publisherAmer Inst Pyhsicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectHecke groupsen_US
dc.subjectRoots of unityen_US
dc.subjectMinimal polynomialsen_US
dc.subjectChebycheff polynomialsen_US
dc.titleSome properties of the minimal polynomials of 2cos(pi/q) for odd qen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000302239800087tr_TR
dc.identifier.scopus2-s2.0-81855186954tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage353tr_TR
dc.identifier.endpage356tr_TR
dc.identifier.volume1389tr_TR
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematicsen_US
dc.contributor.buuauthorÖzgür, Birsen-
dc.contributor.buuauthorDemirci, Musa-
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridABI-4127-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid54403501400tr_TR
dc.contributor.scopusid23566581100tr_TR
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroupsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.