Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28981
Title: Some properties of the minimal polynomials of 2cos(pi/q) for odd q
Authors: Simos, T. E.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Özgür, Birsen
Demirci, Musa
Yurttaş, Aysun
Cangül, İsmail Naci
ABA-6206-2020
ABI-4127-2020
J-3505-2017
AAG-8470-2021
54403501400
23566581100
37090056000
57189022403
Keywords: Mathematics
Hecke groups
Roots of unity
Minimal polynomials
Chebycheff polynomials
Issue Date: 2011
Publisher: Amer Inst Pyhsics
Citation: Özgür, B. vd. (2011). "Some properties of the minimal polynomials of 2cos(pi/q) for odd q". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 353-356.
Abstract: The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number. Here we obtain the minimal polynomial of this number by means of the better known Chebycheff polynomials for odd q and give some of their properties.
Description: Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
URI: https://doi.org/10.1063/1.3636737
https://aip.scitation.org/doi/10.1063/1.3636737
http://hdl.handle.net/11452/28981
ISSN: 0094-243X
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.