Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/28995
Başlık: Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in holstein cattle
Yazarlar: Cole, John B.
Null, Daniel J.
Hansen, Peter J.
Uludağ Üniversitesi/Veterinerlik Fakültesi/Hayvan Bilimleri Anabilim Dalı.
0000-0002-5611-4993
Dikmen, Serdal
A-5731-2018
8280302600
Anahtar kelimeler: Science & technology - other topics
Full pedigree
Genetic evaluation
Dairy-cows
Tolerance
Reproduction
Proteins
Length
Yayın Tarihi: 23-Tem-2013
Yayıncı: Public Library Science
Atıf: Dikmen, S. vd. (2013). "Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in holstein cattle". Plos One, 8(7).
Özet: Heat stress compromises production, fertility, and health of dairy cattle. One mitigation strategy is to select individuals that are genetically resistant to heat stress. Most of the negative effects of heat stress on animal performance are a consequence of either physiological adaptations to regulate body temperature or adverse consequences of failure to regulate body temperature. Thus, selection for regulation of body temperature during heat stress could increase thermotolerance. The objective was to perform a genome-wide association study (GWAS) for rectal temperature (RT) during heat stress in lactating Holstein cows and identify SNPs associated with genes that have large effects on RT. Records on afternoon RT where the temperature-humidity index was >= 78.2 were obtained from 4,447 cows sired by 220 bulls, resulting in 1,440 useable genotypes from the Illumina BovineSNP50 BeadChip with 39,759 SNP. For GWAS, 2, 3, 4, 5, and 10 adjacent SNP were averaged to identify consensus genomic regions associated with RT. The largest proportion of SNP variance (0.07 to 0.44%) was explained by markers flanking the region between 28,877,547 and 28,907,154 bp on Bos taurus autosome (BTA) 24. That region is flanked by U1 (28,822,883 to 28,823,043) and NCAD (28,992,666 to 29,241,119). In addition, the SNP at 58,500,249 bp on BTA 16 explained 0.08% and 0.11% of the SNP variance for 2- and 3-SNP analyses, respectively. That contig includes SNORA19, RFWD2 and SCARNA3. Other SNPs associated with RT were located on BTA 16 (close to CEP170 and PLD5), BTA 5 (near SLCO1C1 and PDE3A), BTA 4 (near KBTBD2 and LSM5), and BTA 26 (located in GOT1, a gene implicated in protection from cellular stress). In conclusion, there are QTL for RT in heat-stressed dairy cattle. These SNPs could prove useful in genetic selection and for identification of genes involved in physiological responses to heat stress.
URI: https://doi.org/10.1371/journal.pone.0069202
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202
http://hdl.handle.net/11452/28995
ISSN: 1932-6203
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Dikmen_vd_2013.pdf250.37 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons