Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshyralyev, Allaberen-
dc.contributor.authorSimos, T.E.-
dc.date.accessioned2022-11-03T12:55:20Z-
dc.date.available2022-11-03T12:55:20Z-
dc.date.issued2011-
dc.identifier.citationAshyralyev, A. (2011). "On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 577-580.en_US
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.3636796-
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.3636796-
dc.identifier.urihttp://hdl.handle.net/11452/29366-
dc.descriptionBu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'de bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe Bitsadze-Samarskii type nonlocal boundary value problem { -d(2)u(t)/dt(2) + Au(t) = f(t), 0 < t < 1, u(0) = phi, u(1) = Sigma(J)(j=1) alpha(j)u(lambda(j)) + psi, (1) Sigma(J)(j=1)vertical bar alpha(j)vertical bar <= 1, 0 < lambda(1) < lambda(2) < ... < lambda(J) < 1 for the differential equation in a Hilbert space H with the self -adjoint positive definite operator A is considered. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well posedness of this difference scheme in difference analogue of Holder spaces is established.en_US
dc.description.sponsorshipEuropean Society of Computational Methods Science & Engineering (ESCMSE)en_US
dc.description.sponsorshipR M Santilli Fdntr_TR
dc.description.sponsorshipACC I Str_TR
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectElliptic equationen_US
dc.subjectNonlocal boundary value problemen_US
dc.subjectDifference schemeen_US
dc.subjectStabilityen_US
dc.titleOn the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problemen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000302239800142tr_TR
dc.identifier.scopus2-s2.0-81855203201tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.identifier.startpage577tr_TR
dc.identifier.endpage580tr_TR
dc.identifier.volume1389tr_TR
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-Cen_US
dc.contributor.buuauthorÖztürk, Elif-
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid54403582400tr_TR
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Identification Problemen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.