Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29366
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ashyralyev, Allaberen | - |
dc.contributor.author | Simos, T.E. | - |
dc.date.accessioned | 2022-11-03T12:55:20Z | - |
dc.date.available | 2022-11-03T12:55:20Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Ashyralyev, A. (2011). "On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 577-580. | en_US |
dc.identifier.issn | 0094-243X | - |
dc.identifier.uri | https://doi.org/10.1063/1.3636796 | - |
dc.identifier.uri | https://aip.scitation.org/doi/10.1063/1.3636796 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29366 | - |
dc.description | Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'de bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | The Bitsadze-Samarskii type nonlocal boundary value problem { -d(2)u(t)/dt(2) + Au(t) = f(t), 0 < t < 1, u(0) = phi, u(1) = Sigma(J)(j=1) alpha(j)u(lambda(j)) + psi, (1) Sigma(J)(j=1)vertical bar alpha(j)vertical bar <= 1, 0 < lambda(1) < lambda(2) < ... < lambda(J) < 1 for the differential equation in a Hilbert space H with the self -adjoint positive definite operator A is considered. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well posedness of this difference scheme in difference analogue of Holder spaces is established. | en_US |
dc.description.sponsorship | European Society of Computational Methods Science & Engineering (ESCMSE) | en_US |
dc.description.sponsorship | R M Santilli Fdn | tr_TR |
dc.description.sponsorship | ACC I S | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Elliptic equation | en_US |
dc.subject | Nonlocal boundary value problem | en_US |
dc.subject | Difference scheme | en_US |
dc.subject | Stability | en_US |
dc.title | On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000302239800142 | tr_TR |
dc.identifier.scopus | 2-s2.0-81855203201 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 577 | tr_TR |
dc.identifier.endpage | 580 | tr_TR |
dc.identifier.volume | 1389 | tr_TR |
dc.relation.journal | AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C | en_US |
dc.contributor.buuauthor | Öztürk, Elif | - |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | CPCIS | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 54403582400 | tr_TR |
dc.subject.scopus | Difference Scheme; Nonlocal Boundary Value Problems; Identification Problem | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.