Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29366
Title: On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem
Authors: Ashyralyev, Allaberen
Simos, T.E.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
Öztürk, Elif
54403582400
Keywords: Mathematics
Elliptic equation
Nonlocal boundary value problem
Difference scheme
Stability
Issue Date: 2011
Publisher: American Institute of Physics
Citation: Ashyralyev, A. (2011). "On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 577-580.
Abstract: The Bitsadze-Samarskii type nonlocal boundary value problem { -d(2)u(t)/dt(2) + Au(t) = f(t), 0 < t < 1, u(0) = phi, u(1) = Sigma(J)(j=1) alpha(j)u(lambda(j)) + psi, (1) Sigma(J)(j=1)vertical bar alpha(j)vertical bar <= 1, 0 < lambda(1) < lambda(2) < ... < lambda(J) < 1 for the differential equation in a Hilbert space H with the self -adjoint positive definite operator A is considered. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well posedness of this difference scheme in difference analogue of Holder spaces is established.
Description: Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'de bildiri olarak sunulmuştur.
URI: https://doi.org/10.1063/1.3636796
https://aip.scitation.org/doi/10.1063/1.3636796
http://hdl.handle.net/11452/29366
ISSN: 0094-243X
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.