Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/29600
Başlık: The (G '/G,1/G)-expansion method for solving nonlinear space-time fractional differential equations
Yazarlar: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0003-4732-5753
Yaşar, Emrullah
Giresunlu, İlker Burak
AAG-9947-2021
23471031300
56971548600
Anahtar kelimeler: Physics
Exact solution
Modified
Riemann-Liouville fractional derivative
Space-time Cahn-Allen equation
Space-time Klein-Gordon equation
(G '/G,1/G)-expansion method
Complex transform
Equations of motion
Exact solution
Expansion methods
Klein-Gordon equation
Riemann-Liouville fractional derivatives
Space time
Nonlinear equations
Yayın Tarihi: 1-Eki-2015
Yayıncı: Indian Acad Sciences
Atıf: Yaşar, E. ve Giresunlu, İ. B. (2016). "The (G '/G,1/G)-expansion method for solving nonlinear space-time fractional differential equations". Pramana-Journal of Physics, 87(2).
Özet: In this work, we present (G'/G,1/G)-expansion method for solving fractional differential equations based on a fractional complex transform. We apply this method for solving space-time fractional Cahn-Allen equation and space-time fractional Klein-Gordon equation. The fractional derivatives are described in the sense of modified Riemann-Lioville. As a result of some exact solution in the form of hyperbolic, trigonometric and rational solutions are deduced. The obtained solutions may be used for explaining of some physical problems. The (G'/G,1/G)-expansion method has a wider applicability for nonlinear equations. We have verified all the obtained solutions with the aid of Maple.
URI: https://doi.org/10.1007/s12043-016-1225-7
https://link.springer.com/article/10.1007/s12043-016-1225-7
http://hdl.handle.net/11452/29600
ISSN: 0304-4289
0973-7111
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.