Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/29621
Başlık: | The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations |
Yazarlar: | Sait, Sadiq M. Li, Xinyu Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. 0000-0003-1790-6987 Yıldız, Betül Sultan Yıldız, Ali Rıza AAL-9234-2020 F-7426-2011 7102365439 57094682600 |
Anahtar kelimeler: | Harris hawks optimization algorithm Grasshopper optimization algorithm Multi-verse optimization algorithm Manufacturing Grinding Design Structural design optimization Multiobjective optimization Water cycle algorithm Grinding process Genetic algorithm Gravitational search Immune algorithm Colony algorithm Topology desing Differential evolution Ant colony optimization Design Genetic algorithms Grinding (machining) Manufacture Particle swarm optimization (PSO) Simulated annealing Differential evolution algorithms Improved differential evolutions Manufacturing operations Optimal machining parameters Optimization algorithms Optimization of processing parameters Particle swarm optimization algorithm Teaching-learning-based optimizations Industrial research |
Yayın Tarihi: | Ağu-2019 |
Yayıncı: | Walter de Gruyter |
Atıf: | Yıldız, B. S. vd. (2019). ''The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations''. Materials Testing, 61(8), 725-733. |
Özet: | In this research, the Harris hawks optimization algorithm (HHO), the grasshopper optimization algorithm (GOA) and the multi-verse optimization algorithm (MVO) have been used in solving manufacturing optimization problems. This paper is the first research study for the optimization of processing parameters for manufacturing processes using the HHO, the GOA, and the MVO in the literature, and in particular, for grinding operations. A well-known grinding optimization problem is solved to prove how effective the HHO, the GOA and the MVO are in solving manufacturing problems and to demonstrate superiority over other algorithms. The results of the HHO, the GOA and the MVO are compared with other methods such as the genetic algorithm, the ant colony algorithm, the scatter search, the differential evolution algorithm, the particle swarm optimization algorithm, simulated annealing, the artificial bee colony, harmony search, improved differential evolution, the hybrid particle swarm algorithm, teaching learning-based optimization algorithms, the cuckoo search, and the fractal search algorithm. The results show that the HHO, the GOA, and the MVO are efficient optimization approaches for obtaining optimal manufacturing variables in manufacturing operations. |
URI: | https://doi.org/10.3139/120.111377 https://www.degruyter.com/document/doi/10.1515/9783035624052-007/html http://hdl.handle.net/11452/29621 |
ISSN: | 0025-5300 2195-8572 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.