Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/29777
Başlık: | Equidistribution of signs for modular eigenforms of half integral weight |
Yazarlar: | Wiese, Gabor Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. İnam, İlker 25925069700 |
Anahtar kelimeler: | Mathematics Forms of half-integer weight Shimura lift Fourier coefficients of automorphic forms Sato-Tate equidistribution Fourier coefficients Elliptic-curves Selmer groups Forms Values |
Yayın Tarihi: | 8-Eki-2013 |
Yayıncı: | Springer |
Atıf: | İnam, İ. ve Wiese, G. (2013). "Equidistribution of signs for modular eigenforms of half integral weight". Archiv der Mathematik, 101(4), 331-339. |
Özet: | Let f be a cusp form of weight k + 1/2 and at most quadratic nebentype character whose Fourier coefficients a(n) are all real. We study an equidistribution conjecture of Bruinier and Kohnen for the signs of a(n). We prove this conjecture for certain subfamilies of coefficients that are accessible via the Shimura lift by using the Sato-Tate equidistribution theorem for integral weight modular forms. Firstly, an unconditional proof is given for the family {a(tp (2))} (p) , where t is a squarefree number and p runs through the primes. In this case, the result is in terms of natural density. To prove it for the family {a(tn (2))} (n) where t is a squarefree number and n runs through all natural numbers, we assume the existence of a suitable error term for the convergence of the Sato-Tate distribution, which is weaker than one conjectured by Akiyama and Tanigawa. In this case, the results are in terms of Dedekind-Dirichlet density. |
URI: | https://doi.org/10.1007/s00013-013-0566-4 https://link.springer.com/article/10.1007/s00013-013-0566-4 http://hdl.handle.net/11452/29777 |
ISSN: | 0003-889X 1420-8938 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Inam_2013.pdf | 120.24 kB | Adobe PDF | Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License