Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29833
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-12-12T13:29:09Z | - |
dc.date.available | 2022-12-12T13:29:09Z | - |
dc.date.issued | 2020-01-15 | - |
dc.identifier.citation | Uzun, B. vd. (2020). "Free vibration of FG nanobeam using a finite-element method". Micro and Nano Letters, 15(1), 35-40. | en_US |
dc.identifier.issn | 1750-0443 | - |
dc.identifier.uri | https://doi.org/10.1049/mnl.2019.0273 | - |
dc.identifier.uri | https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mnl.2019.0273 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29833 | - |
dc.description.abstract | In this work, a non-local finite-element formulation is developed to analyse free vibration of functionally graded (FG) nanobeams considering power-law variation of material through thickness of the nanobeam. The Euler Bernoulli beam theory based on Eringen's non-local elasticity theory with one length scale parameter is used to model the FG nanobeam. To this end, two types of FG nanobeams composed of two different materials are analysed by using the developed non-local finite-element formulation. First FG nanobeam is made of alumina (Al2O3) and steel, whereas second one is composed of silicon carbide (SiC) and stainless steel (SUS304). Numerical results are presented to show the effect of power-law exponent (k) and nanostructural length scale (e(0)a/L) on the free vibration of FG nanobeams. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Graded nanobeams | en_US |
dc.subject | Elastic medium | en_US |
dc.subject | Science & technology - other topics | en_US |
dc.subject | Materials science | en_US |
dc.subject | Alumina | en_US |
dc.subject | Aluminum alloys | en_US |
dc.subject | Aluminum oxide | en_US |
dc.subject | Elasticity | en_US |
dc.subject | Nanowires | en_US |
dc.subject | Silicon alloys | en_US |
dc.subject | Silicon carbide | en_US |
dc.subject | Silicon steel | en_US |
dc.subject | Uranium alloys | en_US |
dc.subject | Vibration analysis | en_US |
dc.subject | Bernoulli beam theory | en_US |
dc.subject | Finite element formulations | en_US |
dc.subject | Functionally graded | en_US |
dc.subject | Length scale parameter | en_US |
dc.subject | Non-local elasticity theories | en_US |
dc.subject | Power law exponent | en_US |
dc.subject | Power law variation | en_US |
dc.subject | Silicon carbides (SiC) | en_US |
dc.subject | Finite element method | en_US |
dc.title | Free vibration of FG nanobeam using a finite-element method | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000541513700007 | tr_TR |
dc.identifier.scopus | 2-s2.0-85077451061 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği. | tr_TR |
dc.contributor.orcid | 0000-0002-7636-7170 | tr_TR |
dc.contributor.orcid | 0000-0003-2231-170X | tr_TR |
dc.identifier.startpage | 35 | tr_TR |
dc.identifier.endpage | 40 | tr_TR |
dc.identifier.volume | 15 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | Micro and Nano Letters | en_US |
dc.contributor.buuauthor | Uzun, Büşra | - |
dc.contributor.buuauthor | Yaylı, Mustafa Özgür | - |
dc.contributor.buuauthor | Deliktaş, Babur | - |
dc.contributor.researcherid | AAH-8687-2021 | tr_TR |
dc.subject.wos | Nanoscience & nanotechnology | en_US |
dc.subject.wos | Materials science, multidisciplinary | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 57208629064 | tr_TR |
dc.contributor.scopusid | 44661926700 | tr_TR |
dc.contributor.scopusid | 7801344314 | tr_TR |
dc.subject.scopus | Nonlocal Elasticity; Strain Gradient; Nonlocal | en_US |
dc.subject.emtree | Aluminum oxide | en_US |
dc.subject.emtree | Functionally graded nanobeam | en_US |
dc.subject.emtree | Nanomaterial | en_US |
dc.subject.emtree | Silicon carbide | en_US |
dc.subject.emtree | Stainless | en_US |
dc.subject.emtree | Steel | en_US |
dc.subject.emtree | Unclassified drug | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Energy | en_US |
dc.subject.emtree | Finite element analysis | en_US |
dc.subject.emtree | Length | en_US |
dc.subject.emtree | Mass | en_US |
dc.subject.emtree | Rigidity | en_US |
dc.subject.emtree | Thickness | en_US |
dc.subject.emtree | Vibration | en_US |
dc.subject.emtree | Young modulus | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Uzun_vd_2020.pdf | 320.78 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License