Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇevik, Ahmet Sinan-
dc.date.accessioned2022-12-29T07:06:40Z-
dc.date.available2022-12-29T07:06:40Z-
dc.date.issued2020-08-14-
dc.identifier.citationGüneş, Y. A. vd. (2020). "Fibonacci graphs". Symmetry-Basel, 12(9).en_US
dc.identifier.issn2073-8994-
dc.identifier.urihttps://doi.org/10.3390/sym12091383-
dc.identifier.urihttps://www.mdpi.com/2073-8994/12/9/1383-
dc.identifier.urihttp://hdl.handle.net/11452/30155-
dc.description.abstractApart from its applications in Chemistry, Biology, Physics, Social Sciences, Anthropology, etc., there are close relations between graph theory and other areas of Mathematics. Fibonacci numbers are of utmost interest due to their relation with the golden ratio and also due to many applications in different areas from Biology, Architecture, Anatomy to Finance. In this paper, we define Fibonacci graphs as graphs having degree sequence consisting of n consecutive Fibonacci numbers and use the invariant omega to obtain some more information on these graphs. We give the necessary and sufficient conditions for the realizability of a set D of n successive Fibonacci numbers for every n and also list all possible realizations called Fibonacci graphs for 1 <= n <= 4.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOmega invarianten_US
dc.subjectDegree sequenceen_US
dc.subjectRealizabilityen_US
dc.subjectFibonacci numberen_US
dc.subjectFibonacci graphen_US
dc.subjectScience & technology - other topicsen_US
dc.titleFibonacci graphsen_US
dc.typeArticleen_US
dc.identifier.wos000587623100001tr_TR
dc.identifier.scopus2-s2.0-85090400401tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0003-4689-3660tr_TR
dc.contributor.orcid0000-0002-6439-8439tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue9tr_TR
dc.relation.journalSymmetry-Baselen_US
dc.contributor.buuauthorGüneş, Aysun Yurttaş-
dc.contributor.buuauthorDelen, Sadık-
dc.contributor.buuauthorDemirci, Musa-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMultidisciplinary sciencesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid57204472528tr_TR
dc.contributor.scopusid23566581100tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusDegree Sequence; Split Graph; Graphen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Gunes_vd_2020.pdf460.07 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons