Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/30207
Başlık: Spatial forecasting of dissolved oxygen concentration in the Eastern Black Sea Basin, Turkey
Yazarlar: Nacar, Sinan
Bayram, Adem
Baki, Osman Tuğrul
Aras, Egemen
Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.
Kankal, Murat
AAZ-6851-2020
24471611900
Anahtar kelimeler: Dissolved oxygen
Eastern Black Sea Basin
Multivariate adaptive regression splines
Stream water quality
Teaching learning based optimization
Yayın Tarihi: 24-Mar-2020
Yayıncı: MDPI
Atıf: Nacar, S. vd. (2020). "Spatial forecasting of dissolved oxygen concentration in the Eastern Black Sea Basin, Turkey". Water, 12(4).
Özet: The aim of this study was to model, as well as monitor and assess the surface water quality in the Eastern Black Sea (EBS) Basin stream, Turkey. The water-quality indicators monitored monthly for the seven streams were water temperature (WT), pH, total dissolved solids (TDS), and electrical conductivity (EC), as well as luminescent dissolved oxygen (LDO) concentration and saturation. Based on an 18-month data monitoring, the surface water quality variation was spatially and temporally evaluated with reference to the Turkish Surface Water Quality Regulation. First, the teaching learning based optimization (TLBO) algorithm and conventional regression analysis (CRA) were applied to three different regression forms, i.e., exponential, power, and linear functions, to predict LDO concentrations. Then, the multivariate adaptive regression splines (MARS) method was employed and three performance measures, namely, mean absolute error (MAE), root means square error (RMSE), and Nash Sutcliffe coefficient of efficiency (NSCE) were used to evaluate the performances of the MARS, TLBO, and CRA methods. The monitoring results revealed that all streams showed the same trend in that lower WT values in the winter months resulted in higher LDO concentrations, while higher WT values in summer led to lower LDO concentrations. Similarly, autumn, which presented the higher TDS concentrations brought about higher EC values, while spring, which presented the lower TDS concentrations gave rise to lower EC values. It was concluded that the water quality of the streams in the EBS basin was high-quality water in terms of the parameters monitored in situ, of which the LDO concentration varied from 9.13 to 10.12 mg/L in summer and from 12.31 to 13.26 mg/L in winter. When the prediction accuracies of the three models were compared, it was seen that the MARS method provided more successful results than the other methods. The results of the TLBO and the CRA methods were very close to each other. The RMSE, MAE, and NSCE values were 0.2599 mg/L, 0.2125 mg/L, and 0.9645, respectively, for the best MARS model, while these values were 0.4167 mg/L, 0.3068 mg/L, and 0.9086, respectively, for the best TLBO and CRA models. In general, the LDO concentration could be successfully predicted using the MARS method with various input combinations of WT, EC, and pH variables.
URI: https://doi.org/10.3390/W12041041
https://www.mdpi.com/2073-4441/12/4/1041
http://hdl.handle.net/11452/30207
ISSN: 2073-4441
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Kankal_vd_2020.pdf1.82 MBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons