Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30216
Title: | A study of three-dimensional paracontact ((kappa)over-tilde, (mu)over-tilde, (nu)over-tilde)-spaces |
Authors: | Erken, İrem Küpeli Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. Murathan, Cengizhan ABH-3658-2020 ABE-8167-2020 6506718146 |
Keywords: | Physics Paracontact metric manifold Para-Sasakian Contact metric manifold (Kappa, mu)-manifold Vector-fields Harmonicity Manifolds |
Issue Date: | Jul-2017 |
Publisher: | World Scientific |
Citation: | Erken, İ. K. ve Murathan, C. (2017). ''A study of three-dimensional paracontact ((kappa)over-tilde, (mu)over-tilde, (nu)over-tilde)-spaces''. International Journal of Geometric Methods in Modern Physics, 14(7). |
Abstract: | This paper is a study of three-dimensional paracontact metric ((kappa) over tilde, (mu) over tilde, (nu) over tilde)-manifolds. Three-dimensional paracontact metric manifolds whose Reeb vector field xi is harmonic are characterized. We focus on some curvature properties by considering the class of paracontact metric ((kappa) over tilde, (mu) over tilde, (nu) over tilde)-manifolds under a condition which is given at Definition 3.1. We study properties of such manifolds according to the cases (kappa) over tilde > -1, (kappa) over tilde = -1, (kappa) over tilde < -1 and construct new examples of such manifolds for each case. We also show the existence of paracontact metric (-1, <(mu)over tilde> not equal 0, (nu) over tilde not equal 0) spaces with dimension greater than 3, such that (h) over tilde (2) = 0 but (h) over tilde not equal 0. |
URI: | https://doi.org/10.1142/S0219887817501067 https://www.worldscientific.com/doi/abs/10.1142/S0219887817501067 1793-6977 http://hdl.handle.net/11452/30216 |
ISSN: | 0219-8878 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Erken_Murathan_2017.pdf | 354.45 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License