Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30399
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-01-11T08:40:26Z | - |
dc.date.available | 2023-01-11T08:40:26Z | - |
dc.date.issued | 2018-04-09 | - |
dc.identifier.citation | Yaylı, M. Ö. (2018). ''Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material''. Micro and Nano Letters, 13(7), 1031-1035. | en_US |
dc.identifier.issn | 1750-0443 | - |
dc.identifier.uri | https://doi.org/10.1049/mnl.2018.0181 | - |
dc.identifier.uri | https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mnl.2018.0181 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30399 | - |
dc.description.abstract | The elastic spring boundary conditions play an important role in dynamical analysis of functionally graded (FG) nanorods. However, these special issues have not been properly paid attention to in the previously developed non-local models. In this work, longitudinal vibration analysis of FG restrained nanorods is presented via non-local elasticity theory. Two axial springs are attached to a FG nanorod at both ends. By considering the non-local differential relations for the FG nanorod, a coefficient matrix is derived and analysed via an exact eigenvalue method. Finally, the results calculated from finite-element method are used to validate the present method. The influence of FG index, non-local parameter and boundary conditions on the axial frequencies of FG nanorods is discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Science & technology - other topics | en_US |
dc.subject | Materials science | en_US |
dc.subject | Vibrations | en_US |
dc.subject | Elasticity | en_US |
dc.subject | Functionally graded materials | en_US |
dc.subject | Nanorods | en_US |
dc.subject | Nanomechanics | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Finite element analysis | en_US |
dc.subject | Free longitudinal vibration | en_US |
dc.subject | Elastic spring boundary conditions | en_US |
dc.subject | Functionally graded material | en_US |
dc.subject | Dynamical analysis | en_US |
dc.subject | Functionally graded nanorods | en_US |
dc.subject | Longitudinal vibration analysis | en_US |
dc.subject | FG restrained nanorods | en_US |
dc.subject | Nonlocal elasticity theory | en_US |
dc.subject | Nonlocal differential relations | en_US |
dc.subject | Coefficient matrix | en_US |
dc.subject | Exact eigenvalue method | en_US |
dc.subject | Finite-element method | en_US |
dc.subject | Nonlocal parameter | en_US |
dc.subject | Boundary conditions | en_US |
dc.subject | Axial frequencies | en_US |
dc.subject | Strain gradient elasticity | en_US |
dc.subject | Fitine-element-method | en_US |
dc.subject | Nonlocal elasticity | en_US |
dc.subject | Buckling analysis | en_US |
dc.subject | Carbon nanotubes | en_US |
dc.subject | Nanostructures | en_US |
dc.subject | Foundation | en_US |
dc.subject | Torsion | en_US |
dc.subject | Beams | en_US |
dc.subject | Beams and girders | en_US |
dc.subject | Boundary conditions | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Elasticity | en_US |
dc.subject | Functionally graded materials | en_US |
dc.subject | Nanorods | en_US |
dc.subject | Springs (components) | en_US |
dc.subject | A-coefficient | en_US |
dc.subject | Dynamical analysis | en_US |
dc.subject | Eigenvalue methods | en_US |
dc.subject | Elastic springs | en_US |
dc.subject | Functionally graded | en_US |
dc.subject | Longitudinal vibrations | en_US |
dc.subject | Non-local elasticity theories | en_US |
dc.subject | Nonlocal models | en_US |
dc.subject | Vibration analysis | en_US |
dc.title | Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000437450100031 | tr_TR |
dc.identifier.scopus | 2-s2.0-85049698223 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-2231-170X | tr_TR |
dc.identifier.startpage | 1031 | tr_TR |
dc.identifier.endpage | 1035 | tr_TR |
dc.identifier.volume | 13 | tr_TR |
dc.identifier.issue | 7 | tr_TR |
dc.relation.journal | Micro and Nano Letters | en_US |
dc.contributor.buuauthor | Yaylı, Mustafa Özgür | - |
dc.contributor.researcherid | AAJ-6390-2021 | tr_TR |
dc.subject.wos | Nanoscience & nanotechnology | en_US |
dc.subject.wos | Materials science, multidisciplinary | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 44661926700 | tr_TR |
dc.subject.scopus | Nonlocal Elasticity; Strain Gradient; Nonlocal | en_US |
dc.subject.emtree | Carbon nanotube | en_US |
dc.subject.emtree | Nanorod | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Comparative study | en_US |
dc.subject.emtree | Controlled study | en_US |
dc.subject.emtree | Elasticity | en_US |
dc.subject.emtree | Finite element analysis | en_US |
dc.subject.emtree | Fourier analysis | en_US |
dc.subject.emtree | Theory | en_US |
dc.subject.emtree | Vibration | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yaylı_2018.pdf | 289.18 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License