Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30623
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Altun, Esra | - |
dc.contributor.author | Aydoğdu, Mehmet O. | - |
dc.contributor.author | Sengil, Ahmet Z. | - |
dc.contributor.author | Ekren, Nazmi | - |
dc.contributor.author | Haskoylu, Merve E. | - |
dc.contributor.author | Oner, Ebru T. | - |
dc.contributor.author | Altuncu, Nese A. | - |
dc.contributor.author | Oztürk, Gürkan | - |
dc.contributor.author | Crabbe-Mann, Maryam | - |
dc.contributor.author | Ahmed, Jubair | - |
dc.contributor.author | Gündüz, Oğuzhan | - |
dc.contributor.author | Edirisinghe, Mohan | - |
dc.date.accessioned | 2023-01-24T06:35:39Z | - |
dc.date.available | 2023-01-24T06:35:39Z | - |
dc.date.issued | 2019-02-05 | - |
dc.identifier.citation | Altun, E. vd. (2019). ''Bioinspired scaffold induced regeneration of neural tissue''. European Polymer Journal, 114, 98-108. | en_US |
dc.identifier.issn | 0014-3057 | - |
dc.identifier.issn | 1873-1945 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eurpolymj.2019.02.008 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0014305718324765 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30623 | - |
dc.description.abstract | In the last decade, nerve tissue engineering has attracted much attention due to the incapability of self-regeneration. Nerve tissue regeneration is mainly based on scaffold induced nanofibrous structures using both bio and synthetic polymers. The produced nanofibrous scaffolds have to be similar to the natural extracellular matrix and should provide an appropriate environment for cells to attach onto. Nanofibrous scaffolds can support or regenerate cells of tissue. Electrospinning is an ideal method for producing the nanofibrous scaffolds. In this study, Bacterial cellulose (BC)/Poly (epsilon-caprolactone) (PCL) blend nanofibrous scaffolds were successfully prepared by electrospinning for nerve tissue induced repair. The produced nanofibrous scaffolds contain well defined interconnected nanofiber networks with hollow micro/nanobeads. Firstly, in-vitro biocompatibilities of nanofibrous scaffolds were tested with L2929 murine fibroblasts and improved cell adhesion and proliferation was observed with polymer blends compared with PCL only. The primary cell culture was performed with dorsal root ganglia (DRG) cells on nanofibrous samples and the samples were found suitable for enhancing neural growth and neurite outgrowth. Based on these results, the BC/PCL (50:50 wt.%) nanofibrous scaffolds exhibited nerve-like branching and are excellent candidate for potential biomimetic applications in nerve tissue engineering regeneration. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Bacterial cellulose | en_US |
dc.subject | Polymer science | en_US |
dc.subject | Polycaprolactone | en_US |
dc.subject | Electrospinning | en_US |
dc.subject | Nerve regeneration | en_US |
dc.subject | Biomimetic | en_US |
dc.subject | Peripheral-nerve regeneration | en_US |
dc.subject | Poly-epsilon-caprolactone | en_US |
dc.subject | Bacterial cellulose | en_US |
dc.subject | Nanofibrous scaffolsds | en_US |
dc.subject | Electrospun nanofibers | en_US |
dc.subject | Stems-cells | en_US |
dc.subject | Fabrication | en_US |
dc.subject | Biocompatibility | en_US |
dc.subject | Biomaterials | en_US |
dc.subject | Composites | en_US |
dc.subject | Biocompatibility | en_US |
dc.subject | Biomimetics | en_US |
dc.subject | Cell adhesion | en_US |
dc.subject | Cell culture | en_US |
dc.subject | Cells | en_US |
dc.subject | Cellulose | en_US |
dc.subject | Electrospinning | en_US |
dc.subject | Nanofibers | en_US |
dc.subject | Polycaprolactone | en_US |
dc.subject | Polymer blends | en_US |
dc.subject | Scaffolds (biology) | en_US |
dc.subject | Tissue | en_US |
dc.subject | Bacterial cellulose | en_US |
dc.subject | Dorsal root ganglia (DRG) | en_US |
dc.subject | Extracellular matrices | en_US |
dc.subject | Murine fibroblasts | en_US |
dc.subject | Nanofibrous scaffolds | en_US |
dc.subject | Nerve regeneration | en_US |
dc.subject | Nerve tissue engineering | en_US |
dc.subject | Primary cell cultures | en_US |
dc.subject | Tissue regeneration | en_US |
dc.title | Bioinspired scaffold induced regeneration of neural tissue | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000467668800012 | tr_TR |
dc.identifier.scopus | 2-s2.0-85061897856 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Ziraat Fakültesi/Gıda Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 98 | tr_TR |
dc.identifier.endpage | 108 | tr_TR |
dc.identifier.volume | 114 | tr_TR |
dc.relation.journal | European Polymer Journal | en_US |
dc.contributor.buuauthor | Togay, Sine O. | - |
dc.contributor.researcherid | AAC-6337-2021 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Polymer science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 36468917400 | tr_TR |
dc.subject.scopus | Electrospinning; Nanofibers; Fiber | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Togay_vd_2019.pdf | 1.88 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License