Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30779
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-02-01T10:34:30Z | - |
dc.date.available | 2023-02-01T10:34:30Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Elmacı, A. vd. (2017). ''Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study''. Desalination and Water Treatment, 87, 131-139. | en_US |
dc.identifier.issn | 1944-3994 | - |
dc.identifier.uri | https://doi.org/10.5004/dwt.2017.20810 | - |
dc.identifier.uri | 1944-3986 | - |
dc.identifier.uri | https://www.cabdirect.org/cabdirect/abstract/20183075201 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30779 | - |
dc.description.abstract | Ultrasound is a well-established technology, but it has been applied only recently to control algal blooms. The main purpose of this study is to determine the appropriateness of field measurements for evaluating the performance of an ultrasonic algae control system using an artificial neural network (ANN) in the Doganci Dam Reservoir (Bursa, TURKEY). Within this study, data were obtained using the NeuroSolutions 5.06 model. Each sample was characterized using ten independent variables (time, total organic carbon (TOC), pH, water temperature (T-water), dissolved oxygen (DO), suspended solids (SS), the Secchi disc depth (SDD), open-water evaporation (E), heat flux density (H), air temperature (T-air), and one dependent variable (chlorophyll-a (Chl-a)). The correlation coefficients between the neural network estimates and field measurements were as high as 0.9747 for Chl-a. The results indicated that the adopted Levenberg-Marquardt back-propagation algorithm yields satisfactory estimates with acceptably low mean square error (MSE) values. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Desalination | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Engineering | en_US |
dc.subject | Water resources | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Levenberg-marquardt algorithm | en_US |
dc.subject | Reservoirs | en_US |
dc.subject | Ultrasonic algae control | en_US |
dc.subject | Cyanobacterial bloom control | en_US |
dc.subject | Feedforward networks | en_US |
dc.subject | Water | en_US |
dc.subject | Prediction | en_US |
dc.subject | Irradiation | en_US |
dc.subject | Fluctuations | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Radiation | en_US |
dc.subject | Depth | en_US |
dc.subject | Lake | en_US |
dc.subject | Bursa [Turkey] | en_US |
dc.subject | Turkey | en_US |
dc.subject | Algae | en_US |
dc.subject | Algal bloom | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Back propagation | en_US |
dc.subject | Control system | en_US |
dc.subject | Dam | en_US |
dc.subject | Error analysis | en_US |
dc.subject | Performance assessment | en_US |
dc.subject | Reservoir | en_US |
dc.subject | Ultrasonics | en_US |
dc.subject | Water treatment | en_US |
dc.title | Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000415820700011 | tr_TR |
dc.identifier.scopus | 2-s2.0-85032006153 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-0387-0656 | tr_TR |
dc.contributor.orcid | 0000-0002-1762-1140 | tr_TR |
dc.identifier.startpage | 131 | tr_TR |
dc.identifier.endpage | 139 | tr_TR |
dc.identifier.volume | 87 | tr_TR |
dc.relation.journal | Desalination and Water Treatment | en_US |
dc.contributor.buuauthor | Elmacı, Ayşe | - |
dc.contributor.buuauthor | Özengin, Nihan | - |
dc.contributor.buuauthor | Yonar, Taner | - |
dc.contributor.researcherid | AAD-9468-2019 | tr_TR |
dc.contributor.researcherid | AAG-9866-2021 | tr_TR |
dc.contributor.researcherid | AAH-1475-2021 | tr_TR |
dc.subject.wos | Engineering, chemical | en_US |
dc.subject.wos | Water resources | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 16230326600 | tr_TR |
dc.contributor.scopusid | 16231232500 | tr_TR |
dc.contributor.scopusid | 6505923781 | tr_TR |
dc.subject.scopus | Prediction; Flood Forecasting; Water Tables | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.