Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30779
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-02-01T10:34:30Z-
dc.date.available2023-02-01T10:34:30Z-
dc.date.issued2017-
dc.identifier.citationElmacı, A. vd. (2017). ''Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study''. Desalination and Water Treatment, 87, 131-139.en_US
dc.identifier.issn1944-3994-
dc.identifier.urihttps://doi.org/10.5004/dwt.2017.20810-
dc.identifier.uri1944-3986-
dc.identifier.urihttps://www.cabdirect.org/cabdirect/abstract/20183075201-
dc.identifier.urihttp://hdl.handle.net/11452/30779-
dc.description.abstractUltrasound is a well-established technology, but it has been applied only recently to control algal blooms. The main purpose of this study is to determine the appropriateness of field measurements for evaluating the performance of an ultrasonic algae control system using an artificial neural network (ANN) in the Doganci Dam Reservoir (Bursa, TURKEY). Within this study, data were obtained using the NeuroSolutions 5.06 model. Each sample was characterized using ten independent variables (time, total organic carbon (TOC), pH, water temperature (T-water), dissolved oxygen (DO), suspended solids (SS), the Secchi disc depth (SDD), open-water evaporation (E), heat flux density (H), air temperature (T-air), and one dependent variable (chlorophyll-a (Chl-a)). The correlation coefficients between the neural network estimates and field measurements were as high as 0.9747 for Chl-a. The results indicated that the adopted Levenberg-Marquardt back-propagation algorithm yields satisfactory estimates with acceptably low mean square error (MSE) values.en_US
dc.language.isoenen_US
dc.publisherDesalinationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectWater resourcesen_US
dc.subjectArtificial neural networksen_US
dc.subjectLevenberg-marquardt algorithmen_US
dc.subjectReservoirsen_US
dc.subjectUltrasonic algae controlen_US
dc.subjectCyanobacterial bloom controlen_US
dc.subjectFeedforward networksen_US
dc.subjectWateren_US
dc.subjectPredictionen_US
dc.subjectIrradiationen_US
dc.subjectFluctuationsen_US
dc.subjectAlgorithmen_US
dc.subjectRadiationen_US
dc.subjectDepthen_US
dc.subjectLakeen_US
dc.subjectBursa [Turkey]en_US
dc.subjectTurkeyen_US
dc.subjectAlgaeen_US
dc.subjectAlgal bloomen_US
dc.subjectArtificial neural networken_US
dc.subjectBack propagationen_US
dc.subjectControl systemen_US
dc.subjectDamen_US
dc.subjectError analysisen_US
dc.subjectPerformance assessmenten_US
dc.subjectReservoiren_US
dc.subjectUltrasonicsen_US
dc.subjectWater treatmenten_US
dc.titleUltrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case studyen_US
dc.typeArticleen_US
dc.identifier.wos000415820700011tr_TR
dc.identifier.scopus2-s2.0-85032006153tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-0387-0656tr_TR
dc.contributor.orcid0000-0002-1762-1140tr_TR
dc.identifier.startpage131tr_TR
dc.identifier.endpage139tr_TR
dc.identifier.volume87tr_TR
dc.relation.journalDesalination and Water Treatmenten_US
dc.contributor.buuauthorElmacı, Ayşe-
dc.contributor.buuauthorÖzengin, Nihan-
dc.contributor.buuauthorYonar, Taner-
dc.contributor.researcheridAAD-9468-2019tr_TR
dc.contributor.researcheridAAG-9866-2021tr_TR
dc.contributor.researcheridAAH-1475-2021tr_TR
dc.subject.wosEngineering, chemicalen_US
dc.subject.wosWater resourcesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid16230326600tr_TR
dc.contributor.scopusid16231232500tr_TR
dc.contributor.scopusid6505923781tr_TR
dc.subject.scopusPrediction; Flood Forecasting; Water Tablesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.