Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/30779
Başlık: Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study
Yazarlar: Uludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü.
0000-0002-0387-0656
0000-0002-1762-1140
Elmacı, Ayşe
Özengin, Nihan
Yonar, Taner
AAD-9468-2019
AAG-9866-2021
AAH-1475-2021
16230326600
16231232500
6505923781
Anahtar kelimeler: Engineering
Water resources
Artificial neural networks
Levenberg-marquardt algorithm
Reservoirs
Ultrasonic algae control
Cyanobacterial bloom control
Feedforward networks
Water
Prediction
Irradiation
Fluctuations
Algorithm
Radiation
Depth
Lake
Bursa [Turkey]
Turkey
Algae
Algal bloom
Artificial neural network
Back propagation
Control system
Dam
Error analysis
Performance assessment
Reservoir
Ultrasonics
Water treatment
Yayın Tarihi: 2017
Yayıncı: Desalination
Atıf: Elmacı, A. vd. (2017). ''Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study''. Desalination and Water Treatment, 87, 131-139.
Özet: Ultrasound is a well-established technology, but it has been applied only recently to control algal blooms. The main purpose of this study is to determine the appropriateness of field measurements for evaluating the performance of an ultrasonic algae control system using an artificial neural network (ANN) in the Doganci Dam Reservoir (Bursa, TURKEY). Within this study, data were obtained using the NeuroSolutions 5.06 model. Each sample was characterized using ten independent variables (time, total organic carbon (TOC), pH, water temperature (T-water), dissolved oxygen (DO), suspended solids (SS), the Secchi disc depth (SDD), open-water evaporation (E), heat flux density (H), air temperature (T-air), and one dependent variable (chlorophyll-a (Chl-a)). The correlation coefficients between the neural network estimates and field measurements were as high as 0.9747 for Chl-a. The results indicated that the adopted Levenberg-Marquardt back-propagation algorithm yields satisfactory estimates with acceptably low mean square error (MSE) values.
URI: https://doi.org/10.5004/dwt.2017.20810
1944-3986
https://www.cabdirect.org/cabdirect/abstract/20183075201
http://hdl.handle.net/11452/30779
ISSN: 1944-3994
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.