Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/31282
Title: | Numerical prediction of short-cut flows in gas-solid reverse flow cyclone separators |
Other Titles: | Numerička predviđanje strujnih prečica u ciklonskim separatorima gasno-čvrsto sa reversnim tokom |
Authors: | Sakin, Ali Uludağ Üniversitesi/Mühendislik Mimarlık Fakültesi/Makine Mühendisliği Bölümü. 0000-0002-7442-2746 Karagöz, İrfan AAB-9388-2020 56785809700 |
Keywords: | Chemistry Engineering CFD Cut-off diameter Pressure drop Separation efficiency Swirl flow Tangential inlet cyclone Collection efficiency Pressure-drop Sampling cyclones Performance CFD Velocity Hydrodynamics Simulations Dimensions |
Issue Date: | 13-Jan-2017 |
Publisher: | Assoc Chemical Engineering |
Citation: | Sakin, A. ve Karagöz, İ. (2017). ''Numerical prediction of short-cut flows in gas-solid reverse flow cyclone separators''. Chemical Industry and Chemical Engineering Quarterly, 23(4), 483-493. |
Abstract: | The effect of operational and geometrical parameters on the short-cut flow in cyclone separators has been investigated computationally using the Reynolds stress model (RSM). The motion of solid particles in the flow field was simulated using the Eulerian-Lagrangian approach with one way discrete phase method (DPM). Eleven cyclones with different cone tip diameters, vortex finder lengths and diameters were studied and the simulation results were analyzed in terms of velocity fields, pressure drops, cut-off diameters and short-cut flows. The numerical simulation was verified with the published experimental results. The results obtained demonstrate that all three parameters, particularly, vortex finder diameter, have significant effects on the cut-off diameter (collection efficiency), the short-cut flow and the pressure drop. |
URI: | https://doi.org/10.2298/CICEQ161009002S http://www.doiserbia.nb.rs/Article.aspx?ID=1451-93721700002S#.Y8-uR3ZByM9 http://hdl.handle.net/11452/31282 |
ISSN: | 1451-9372 2217-7434 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Karagöz_Sakin_2017.pdf | 1.59 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License